×

Kirillov structures and reduction of Hamiltonian systems by scaling and standard symmetries. (English) Zbl 07899488

Summary: In this paper, we discuss the reduction of symplectic Hamiltonian systems by scaling and standard symmetries which commute. We prove that such a reduction process produces a so-called Kirillov Hamiltonian system. Moreover, we show that if we reduce first by the scaling symmetries and then by the standard ones or in the opposite order, we obtain equivalent Kirillov Hamiltonian systems. In the particular case when the configuration space of the symplectic Hamiltonian system is a Lie group \(G\), which coincides with the symmetry group, the reduced structure is an interesting Kirillov version of the Lie-Poisson structure on the dual space of the Lie algebra of \(G\). We also discuss a reconstruction process for symplectic Hamiltonian systems which admit a scaling symmetry. All the previous results are illustrated in detail with some interesting examples.
© 2024 The Author(s). Studies in Applied Mathematics published by Wiley Periodicals LLC.

MSC:

37-XX Dynamical systems and ergodic theory
70-XX Mechanics of particles and systems

References:

[1] AbrahamR, MarsdenJE. Foundations of Mechanics. 2nd ed. Benjamin/Cummings Publishing Co., Inc., Advanced Book Program; 1978. · Zbl 0393.70001
[2] MarsdenJE, MontgomeryR, RatiuT. Reduction, Symmetry and Phases in Mechanics. Vol 88. No. 436. Memoirs of the American Mathematical Society; 1990. · Zbl 0713.58052
[3] LibermannP, MarleCh‐M. Symplectic Geometry and Analytical Mechanics. Translated from French by Bertram Eugene Schwarzbach. Mathematics and Its Applications. Vol 35, D. Reidel Publishing Co.; 1987. · Zbl 0643.53002
[4] OlverPJ. Applications of Lie Groups to Differential Equations. Vol 107. 2nd ed. Graduate Texts in Mathematics. Springer‐Verlag; 2000. · Zbl 0937.58026
[5] PoincaréH. Science and Method. Maitland, F, trans. Courier Corporation; 2003 (Originally published 1908).
[6] GrybS, SloanD. When scale is surplus. Synthese. 2021;199(5‐6):14769‐14820. · Zbl 1528.83101
[7] BarbourJ. Shape dynamics. An introduction. In: Quantum Field Theory and Gravity: Conceptual and Mathematical Advances in the Search for a Unified Framework. Springer Basel; 2012:257‐297. · Zbl 1246.70015
[8] MercatiF. Shape Dynamics: Relativity and Relationalism. Oxford University Press; 2018. · Zbl 1383.83003
[9] KoslowskiT, MercatiF, SloanD. Through the big bang: continuing Einstein’s equations beyond a cosmological singularity. Phys Lett B. 2018;778:339‐343. · Zbl 1383.83235
[10] SloanD. Scalar fields and the FLRW singularity. Class Quantum Gravity. 2019;36(23):235004. · Zbl 1478.83268
[11] MercatiF, SloanD. Traversing through a black hole singularity. Phys Rev D. 2022;106(4):044015.
[12] BarbourJ, KoslowskiT, MercatiF. Identification of a gravitational arrow of time. Phys Rev Lett. 2014;113(18):181101.
[13] SloanD. Scale symmetry and friction. Symmetry. 2021;13(9):1639.
[14] BravettiA, CruzH, TapiasD. Contact Hamiltonian mechanics. Ann Phys. 2017;376:17‐39. · Zbl 1364.37138
[15] BravettiA, TapiasD. Thermostat algorithm for generating target ensembles. Phys Rev E. 2016;93(2):022139.
[16] BravettiA. Contact geometry and thermodynamics. Int J Geom Methods Mod Phys. 2019;16:1940003. · Zbl 1421.80002
[17] deLeónM, SardónC. Cosymplectic and contact structures for time‐dependent and dissipative Hamiltonian systems. J Phys A Math Theor. 2017;50(25):255205. · Zbl 1425.70031
[18] deLeónM, Lainz ValcázarM. Contact Hamiltonian systems. J Math Phys. 2019;60(10):102902. · Zbl 1427.70039
[19] GasetJ, GràciaX, Muñoz‐LecandaMC, RivasX, Román‐RoyN. New contributions to the Hamiltonian and Lagrangian contact formalisms for dissipative mechanical systems and their symmetries. Int J Geom Methods Mod Phys. 2020;17(06):2050090. · Zbl 07809134
[20] GasetJ, GràciaX, Muñoz‐LecandaMC, RivasX, Román‐RoyN. A contact geometry framework for field theories with dissipation. Ann Phys. 2020;414:168092. · Zbl 1433.53042
[21] SimoesAA, deLeónM, ValcázarML, deDiegoDM. Contact geometry for simple thermodynamical systems with friction. Proc R Soc A. 2020;476(2241):20200244. · Zbl 1472.53109
[22] GhoshA. Generalized virial theorem for contact Hamiltonian systems. J Phys A Math Theor. 2023;56(23):235205. · Zbl 1517.70027
[23] EsenO, GrmelaM, PavelkaM. On the role of geometry in statistical mechanics and thermodynamics. I. Geometric perspective. J Math Phys. 2022;63(12):122902. · Zbl 1509.82072
[24] van derSchaftA. Liouville geometry of classical thermodynamics. J Geom Phys. 2021;170:104365:16pp. · Zbl 1479.53082
[25] SloanD. Dynamical similarity. Phys Rev D. 2018;97(12):123541.
[26] BravettiA, JackmanC, SloanD. Scaling symmetries, contact reduction and Poincare’s dream. J Phys A Math Theor. 2023;56:435203. · Zbl 1529.37036
[27] BraddellR, DelshamsA, MirandaE, OmsC, PlanasA. An invitation to singular symplectic geometry. Int J Geom Methods Mod Phys. 2019;16:1940008. · Zbl 1423.53098
[28] MirandaE, OmsC. Contact structures with singularities: from local to global. J Geom Phys. 2023;192:104957. · Zbl 1529.53072
[29] BruceAJ, GrabowskaK, GrabowskiJ. Remarks on contact and Jacobi geometry. Symmetry Integrability Geom Methods Appl. 2017;13(059), 22 pp. · Zbl 1369.53057
[30] GrabowskaK, GrabowskiJ. A geometric approach to contact Hamiltonians and contact Hamilton-Jacobi theory. J Phys A Math Theor. 2022;55:435204. · Zbl 1511.53071
[31] MarleCh‐M. On Jacobi manifolds and Jacobi bundles. In: Symplectic Geometry, Groupoids, and Integrable Systems. Vol 20. Mathematical Sciences Research Institute Publications. Springer; 1991:227‐246. · Zbl 0735.53023
[32] GrabowskiJ. Graded contact manifolds and contact Courant algebroids. J Geom Phys. 2013;68:27-58. · Zbl 1280.53070
[33] GrabowskiJ, IglesiasD, MarreroJC, PadrónE, UrbánskiP. Jacobi structures on affine bundles. Acta Math Sinica. 2007;23:769‐788. · Zbl 1128.53054
[34] GuediraF, LichnerowiczA. Géométrie des algèbres de Lie locales de Kirillov. J Math Pures Appl. 1984;63:407‐484. · Zbl 0562.53029
[35] KirillovAA. Local Lie algebras. Russ Math Surv. 1976;31(4):55‐75. · Zbl 0357.58003
[36] MarsdenJE, RatiuT. Reduction of Poisson manifolds. Lett Math Phys. 1986;11:161‐169. · Zbl 0602.58016
[37] Nunes da CostaJ. Réduction des variétés de Jacobi. C R Acad Sci I. 1989;308(4):101‐103. · Zbl 0665.58012
[38] GrabowskaK, GrabowskiJ. Reductions: precontact versus presymplectic. Ann Mat. 2023;202:2803‐2839. · Zbl 1528.53075
[39] BravettiA, Garcia‐ChungA. A geometric approach to the generalized Noether theorem. J Phys A Math Theor. 2021;54(9):095205. · Zbl 1519.70019
[40] AzuajeR, BravettiA. Scaling symmetries and canonoid transformations in Hamiltonian systems. Int J Geom Methods Mod Phys. 2023. 10.1142/S0219887824500774 · Zbl 07850815
[41] VitaglianoL, WadeA. Holomorphic Jacobi manifolds. Int J Math. 2020;31(03):2050024. · Zbl 1476.53103
[42] ArnoldVI. Mathematical Methods of Classical Mechanics. Vol 60. 2nd ed. Translated from the Russian by Vogtmann K and Weinstein A. Graduate Texts in Mathematics. Springer‐Verlag; 1989.
[43] DazordP, LichnerowiczA, MarleCh‐M. Structures locale des variètès de Jacobi. J Math Pures Appl. 1991;70(1):101‐152. · Zbl 0659.53033
[44] LichnerowiczA. Les variétés de Jacobi et leurs algèbres de Lie associées. J Math Pures Appl. 1978;57:453‐488. · Zbl 0407.53025
[45] BlairD. Riemannian Geometry of Contact and Symplectic Manifolds. Progress in Mathematics. Vol 203. Birkhäuser Boston, Inc.; 2002. · Zbl 1011.53001
[46] ReebG. Sur certaines propriétés topologiques des trajectoires des systémes dynamiques. (French). Vol 27. Acad. Roy. Belg. Cl. Sci. Mém. Coll. in \(8^{\circ }1952\);64 pp. · Zbl 0048.32903
[47] SasakiS. On the differential geometry of tangent bundles of Riemannian manifolds. II. Tohoku Math J (2). 1962;14:146‐155. · Zbl 0109.40505
[48] DraguleteO, OrneaL, RatiuTS. Cosphere bundle reduction in contact geometry. J Symplectic Geom. 2003;1(4):695‐714. · Zbl 1208.53088
[49] DraguleteO, RatiuTS, Rodríguez‐OlmosM. Singular cosphere bundle reduction. Trans Am Math Soc. 2007;359(9):4209‐4235. · Zbl 1128.53056
[50] AlbertC. Le théorème de réduction de Marsden‐Weinstein en géometrie cosymplectique et de contact. The Marsden‐Weinstein reduction theorem in cosymplectic and contact geometry. J Geom Phys. 1989;6(4):627‐649. · Zbl 0712.53017
[51] GrantcharovG, OrneaL. Reduction of Sasakian manifolds. J Math Phys. 2001;42:3808‐3816. · Zbl 1016.53035
[52] DraguleteO, OrneaL. Non‐zero contact and Sasakian reduction. Differ Geom Appl. 2006;24(3):260‐270. · Zbl 1122.53023
[53] WillettC. Contact reduction. Trans Am Math Soc. 2002;354(10):4245‐4260. · Zbl 1018.53038
[54] VitaglianoL, WadeA. Holomorphic Jacobi manifolds and holomorphic contact groupoids. Math Z. 2020;294:1181‐1225. · Zbl 1434.53087
[55] GrabowskaK, GrabowskiJ. n‐tuple principal bundles. Int J Geom Methods Mod Phys. 2018;15(12):1850211,18 pp. · Zbl 1409.55016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.