×

Formulas for calculating the \(3j\)-symbols of the representations of the Lie algebra \({\mathfrak{gl}}_3\) for the Gelfand-Tsetlin bases. (English. Russian original) Zbl 1503.17015

Sib. Math. J. 63, No. 4, 595-610 (2022); translation from Sib. Mat. Zh. 63, No. 4, 717-735 (2022).
The Lie group \(\mathrm{GL}_3\equiv \mathrm{GL}(3,\mathbb{C})\) and the corresponding Lie algebra \(\mathfrak{gl}_3\equiv\mathfrak{gl}(3,\mathbb{C})\) are important from a mathematical point of view and used in quark theory. The decomposition of the tensor product of representations of \(\mathfrak{gl}_3\) into a direct sum of irreducible ones plays a fundamental role. These decompositions are described by choosing bases in the involved vector spaces and by expending the tensor products of basis vectors. An adequate choice as concerns the realizations of the considered representations and of the used bases leads to simpler expressions for the coefficients of these expressions. These coefficients, called Clebsch-Gordan coefficients, are directly related to the so called \(3j\)-symbols. The author obtains for the \(3j\)-symbols of \(\mathfrak{gl}_3\) simple and explicit formulas in terms of hypergeometric functions by decomposing invariant functions \(f: \mathrm{GL}_3\times \mathrm{GL}_3\times \mathrm{GL}_3\longrightarrow \mathbb{C}\) as linear combinations of products of functions on the factors. The computation is based on an explicit description of the invariant inner product in the space of functions.

MSC:

17B10 Representations of Lie algebras and Lie superalgebras, algebraic theory (weights)
33C45 Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.)
Full Text: DOI

References:

[1] Biedenharn, LC; Louck, JD, Angular Momentum in Quantum Mechanics (1981), Reading: Addison-Wesley, Reading · Zbl 0474.00023
[2] Greiner, W.; Muller, B., Quantum Mechanics. Symmetries (1994), Berlin: Springer, Berlin · Zbl 0803.00008 · doi:10.1007/978-3-642-57976-9_1
[3] Van der Waerden, BL, Die gruppentheoretische Methode in der Quantenmechanik (1932), Berlin: Julius Springer, Berlin · Zbl 0004.08905 · doi:10.1007/978-3-662-02187-3
[4] Godunov, SK; Mikhailova, TY, Representations of the Rotation Group and Spherical Functions (1998), Novosibirsk: Nauchnaya Kniga, Novosibirsk · Zbl 0936.20041
[5] Godunov, SK; Gordienko, VM, The Clebsch-Gordan coefficients with respect to various bases for unitary and orthogonal representations of \(SU(2)\) and \(SO(3) \), Sib. Math. J., 45, 3, 443-458 (2004) · Zbl 1048.22003 · doi:10.1023/B:SIMJ.0000028609.97557.b8
[6] Gordienko, VM, On the matrices of Clebsch-Gordan coefficients, Sib. Math. J., 58, 6, 990-1003 (2017) · Zbl 1398.22015 · doi:10.1134/S0037446617060088
[7] Selivanova, SV, Invariant recording of elasticity theory equations, J. Appl. Mech. Techn. Phys., 49, 5, 809-822 (2008) · doi:10.1007/s10808-008-0101-8
[8] Baid, GE; Biedenharn, LC, On the representations of semisimple Lie groups. II, J. Math. Phys., 4, 12, 1449-1466 (1963) · Zbl 0132.44302 · doi:10.1063/1.1703926
[9] Biedenharn, LC; Louck, JD, A pattern calculus for tensor operators in the unitary groups, Comm. Math. Phys., 8, 2, 89-131 (1968) · Zbl 0155.32405 · doi:10.1007/BF01645800
[10] Biedenharn, LC; Louck, JD, A pattern calculus for tensor operators in the unitary groups, Comm. Math. Phys., 8, 2, 89-131 (1968) · Zbl 0155.32405 · doi:10.1007/BF01645800
[11] Biedenharn, LC; Louck, JD, Canonical adjoint tensor operators in \(U(n) \), J. Math. Phys., 11, 8, 2368-2411 (1970) · Zbl 0196.14501 · doi:10.1063/1.1665404
[12] Biedenharn, LC; Ciftan, M.; Chacón, E., On the evaluation of the multiplicity-free Wigner coefficients of \(U(n) \), J. Math. Phys., 13, 5, 577-589 (1972) · Zbl 0245.22023 · doi:10.1063/1.1666018
[13] Biedenharn, LC; Louck, JD, On the structure of the canonical tensor operators in the unitary groups. II. An extension of the pattern calculus rules and the canonical splitting in \(U(3) \), J. Math. Phys., 13, 12, 1957-1984 (1972) · Zbl 0253.20069 · doi:10.1063/1.1665940
[14] Artamonov, DV, The Clebsh-Gordan coefficients for the algebra \(\mathfrak{gl}_3\) and hypergeometric functions, St. Petersburg Math. J., 33, 1, 1-22 (2022) · Zbl 1511.17017
[15] Artamonov, DV, Formula for the product of Gauss hypergeometric functions and applications, J. Math. Sci., 249, 6, 1-29 (2020) · Zbl 1448.33003
[16] Zhelobenko, DP, Compact Lie Groups and Their Representations (2007), Moscow: MTsNMO, Moscow
[17] Gelfand, IM; Graev, MI; Retakh, VS, General hypergeometric systems of equations and series of hypergeometric type, Uspekhi Mat. Nauk, 47, 4, 3-82 (1992) · Zbl 0798.33010
[18] Klyachko, AA, Stable Vector Bundles and Hermitian Operators (1994)
[19] Knutson, A.; Tao, T., The honeycomb model of \(GL_n({𝔺})\) tensor products. I: Proof of the saturation conjecture, J. Amer. Math. Soc., 12, 4, 1055-1090 (1999) · Zbl 0944.05097 · doi:10.1090/S0894-0347-99-00299-4
[20] Manon, C.; Zhou, Z., Semigroups of \(sl_2({𝔺})\) tensor product invariants, J. Algebra, 400, 94-104 (2014) · Zbl 1298.17013 · doi:10.1016/j.jalgebra.2013.11.006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.