×

Modelling and analysis of propagation behavior of computer viruses with nonlinear countermeasure probability and infected removable storage media. (English) Zbl 1459.68016

Summary: The dissemination of countermeasures is diffusely recognized as one of the most valid strategies of containing computer virus diffusion. In order to better understand the impacts of countermeasure and removable storage media on viral spread, this paper addresses a dynamical model, which incorporates nonlinear countermeasure probability and infected removable storage media. Theoretical analysis reveals that the unique (viral) equilibrium of the model is globally asymptotically stable. This main result is also illustrated by some numerical experiments. Additionally, the numerical experiments of different countermeasure probabilities are conducted.

MSC:

68M11 Internet topics
68M25 Computer security

References:

[1] Szor, P., The Art of Computer Virus Research and Defense (2005), Boston, MA, USA: Addison-Wesley Professional, Boston, MA, USA
[2] Wierman, J. C.; Marchette, D. J., Modeling computer virus prevalence with a susceptible-infected-susceptible model with reintroduction, Computational Statistics & Data Analysis, 45, 1, 3-23 (2004) · Zbl 1429.68037 · doi:10.1016/s0167-9473(03)00113-0
[3] d’Onofrio, A., A note on the global behaviour of the network-based SIS epidemic model, Nonlinear Analysis Real World Applications, 9, 4, 1567-1572 (2008) · Zbl 1154.34355
[4] Mishra, B. K.; Jha, N., Fixed period of temporary immunity after run of anti-malicious software on computer nodes, Applied Mathematics and Computation, 190, 2, 1207-1212 (2007) · Zbl 1117.92052 · doi:10.1016/j.amc.2007.02.004
[5] Gan, C.; Feng, Q.; Zhu, Q.; Zhang, Z.; Zhang, Y.; Xiang, Y., Analysis of computer virus propagation behaviors over complex networks: a case study of oregon routing network, Nonlinear Dynamics, 100, 2, 1725-1740 (2020) · Zbl 1459.34082 · doi:10.1007/s11071-020-05562-1
[6] Yang, L.-X.; Yang, X.; Wen, L.; Liu, J., A novel computer virus propagation model and its dynamics, International Journal of Computer Mathematics, 89, 17, 2307-2314 (2012) · Zbl 1255.68058 · doi:10.1080/00207160.2012.715388
[7] Zhu, Q.; Yang, X.; Yang, L.; Zhang, X., A mixing propagation model of computer viruses and countermeasures, Nonlinear Dynamics, 73, 7, 1433-1441 (2013) · Zbl 1281.68056 · doi:10.1007/s11071-013-0874-z
[8] Yang, L.-X.; Yang, X., The effect of infected external computers on the spread of viruses: a compartment modeling study, Physica A: Statistical Mechanics and Its Applications, 392, 24, 6523-6535 (2013) · Zbl 1395.34063 · doi:10.1016/j.physa.2013.08.024
[9] Zhang, X.; Gan, C., Global attractivity and optimal dynamic countermeasure of a virus propagation model in complex networks, Physica A: Statistical Mechanics and Its Applications, 490, 1004-1018 (2018) · Zbl 1514.68024 · doi:10.1016/j.physa.2017.08.085
[10] Liu, W.; Zhong, S., Web malware spread modelling and optimal control strategies, Scientific Reports, 7, 1 (2017) · doi:10.1038/srep42308
[11] Chen, L.-C.; Carley, K. M., The impact of countermeasure propagation on the prevalence of computer viruses, IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics), 34, 2, 823-833 (2004) · doi:10.1109/tsmcb.2003.817098
[12] Thieme, H. R., Convergence results and a poincare-bendixson trichotomy for asymptotically autonomous differential equations, Journal of Mathematical Biology, 30, 7, 755-763 (1992) · Zbl 0761.34039 · doi:10.1007/bf00173267
[13] Robinson, R. C., An Introduction to Dynamical System: Continuous and Discrete (2004), Englewood Cliffs, NJ, USA: Prentice Hall, Englewood Cliffs, NJ, USA · Zbl 1073.37001
[14] Zhang, C.; Liu, W.; Xiao, J.; Zhao, Y., Hopf bifurcation of an improved SLBS model under the influence of latent period, Mathematical Problems in Engineering, 2013 (2013) · Zbl 1296.34154 · doi:10.1155/2013/196214
[15] Ren, J.; Xu, Y., Stability and bifurcation of a computer virus propagation model with delay and incomplete antivirus ability, Mathematical Problems in Engineering, 2014 (2014) · Zbl 1407.68055 · doi:10.1155/2014/475934
[16] Yao, Y.; Feng, X. D.; Yang, W.; Xiang, W. L.; Gao, F. X., Analysis of a delayed Internet worm propagation model with impulsive quarantine strategy, Mathematical Problems in Engineering, 2014 (2014) · Zbl 1407.34073 · doi:10.1155/2014/369360
[17] Zhang, C.; Zhao, Y.; Wu, Y.; Deng, S., A stochastic dynamic model of computer viruses, Discrete Dynamics in Nature and Society, 2012 (2012) · Zbl 1248.68080 · doi:10.1155/2012/264874
[18] Amador, J., The stochastic SIRA model for computer viruses, Applied Mathematics and Computation, 232, 1112-1124 (2014) · Zbl 1410.68035 · doi:10.1016/j.amc.2014.01.125
[19] Zhang, C.; Huang, H., Optimal control strategy for a novel computer virus propagation model on scale-free networks, Physica A: Statistical Mechanics and Its Applications, 451, 251-265 (2016) · Zbl 1400.34093 · doi:10.1016/j.physa.2016.01.028
[20] Feng, L.; Song, L.; Zhao, Q.; Wang, H., Modeling and stability analysis of worm propagation in wireless sensor network, Mathematical Problems in Engineering, 2015 (2015) · Zbl 1394.68013 · doi:10.1155/2015/129598
[21] Singh, A.; Awasthi, A. K.; Singh, K.; Srivastava, P. K., Modeling and analysis of worm propagation in wireless sensor networks, Wireless Personal Communications, 98, 3, 2535-2551 (2018) · doi:10.1007/s11277-017-4988-3
[22] Zhang, Z.; Kundu, S.; Wei, R., A delayed epidemic model for propagation of malicious codes in wireless sensor network, Mathematics, 7, 5 (2019) · doi:10.3390/math7050396
[23] Alduaiji, N.; Datta, A.; Li, J., Influence propagation model for clique-based community detection in social networks, IEEE Transactions on Computational Social Systems, 5, 2, 563-575 (2018) · doi:10.1109/tcss.2018.2831694
[24] Li, J.; Cai, T.; Deng, K.; Wang, X.; Sellis, T.; Xia, F., Community-diversified influence maximization in social networks, Information Systems, 92 (2020) · doi:10.1016/j.is.2020.101522
[25] Gan, C.; Feng, Q.; Zhang, X.; Zhang, Z.; Zhu, Q., Dynamical propagation model of malware for cloud computing security, IEEE Access, 8, 20325-20333 (2020) · doi:10.1109/access.2020.2968916
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.