×

Irreducible metric maps and Weil-Petersson volumes. (English) Zbl 1495.05061

Summary: We consider maps on a surface of genus \(g\) with all vertices of degree at least three and positive real lengths assigned to the edges. In particular, we study the family of such metric maps with fixed genus \(g\) and fixed number \(n\) of faces with circumferences \(\alpha_1,\ldots ,\alpha_n\) and a \(\beta\)-irreducibility constraint, which roughly requires that all contractible cycles have length at least \(\beta\). Using recent results on the enumeration of discrete maps with an irreducibility constraint, we compute the volume \(V_{g,n}^{(\beta)}(\alpha_1,\ldots ,\alpha_n)\) of this family of maps that arises naturally from the Lebesgue measure on the edge lengths. It is shown to be a homogeneous polynomial in \(\beta\), \(\alpha_1,\ldots, \alpha_n\) of degree \(6g-6+2n\) and to satisfy string and dilaton equations. Surprisingly, for \(g=0,1\) and \(\beta =2\pi\) the volume \(V_{g,n}^{(2\pi)}\) is identical, up to powers of two, to the Weil-Petersson volume \(V_{g,n}^{\mathrm{WP}}\) of hyperbolic surfaces of genus \(g\) and \(n\) geodesic boundary components of length \(L_i = \sqrt{\alpha_i^2 - 4\pi^2}, i=1,\ldots ,n\). For genus \(g\ge 2\) the identity between the volumes fails, but we provide explicit generating functions for both types of volumes, demonstrating that they are closely related. Finally we discuss the possibility of bijective interpretations via hyperbolic polyhedra.

MSC:

05C10 Planar graphs; geometric and topological aspects of graph theory
81T99 Quantum field theory; related classical field theories
14H81 Relationships between algebraic curves and physics
54E35 Metric spaces, metrizability
32G15 Moduli of Riemann surfaces, Teichmüller theory (complex-analytic aspects in several variables)

References:

[1] Lando, S.K., Zvonkin, A.K.: Graphs on Surfaces and Their Applications. Encyclopaedia of Mathematical Sciences, vol. 141, p. 455. Springer, Berlin (2004). doi:10.1007/978-3-540-38361-1. With an appendix by Don B. Zagier, Low-Dimensional Topology, II · Zbl 1040.05001
[2] Witten, E.: Two-dimensional gravity and intersection theory on moduli space. In: Surveys in Differential Geometry (Cambridge, MA, 1990), pp. 243-310. Lehigh Univ., Bethlehem, PA (1991) · Zbl 0757.53049
[3] Kontsevich, M., Intersection theory on the moduli space of curves and the matrix Airy function, Commun. Math. Phys., 147, 1, 1-23 (1992) · Zbl 0756.35081 · doi:10.1007/BF02099526
[4] Manin, YI; Zograf, P., Invertible cohomological field theories and Weil-Petersson volumes, Ann. Inst. Fourier (Grenoble), 50, 2, 519-535 (2000) · Zbl 1001.14008 · doi:10.5802/aif.1764
[5] Mirzakhani, M., Weil-Petersson volumes and intersection theory on the moduli space of curves, J. Am. Math. Soc., 20, 1, 1-23 (2007) · Zbl 1120.32008 · doi:10.1090/S0894-0347-06-00526-1
[6] Mulase, M.; Safnuk, B., Mirzakhani’s recursion relations, Virasoro constraints and the KdV hierarchy, Indian J. Math., 50, 1, 189-218 (2008) · Zbl 1144.14030
[7] Liu, K.; Xu, H., Recursion formulae of higher Weil-Petersson volumes, Int. Math. Res. Not. IMRN, 5, 835-859 (2009) · Zbl 1186.14059 · doi:10.1093/imrn/rnn148
[8] Okounkov, A., Toda equations for Hurwitz numbers, Math. Res. Lett., 7, 4, 447-453 (2000) · Zbl 0969.37033 · doi:10.4310/MRL.2000.v7.n4.a10
[9] Goulden, IP; Jackson, DM, The KP hierarchy, branched covers, and triangulations, Adv. Math., 219, 3, 932-951 (2008) · Zbl 1158.37026 · doi:10.1016/j.aim.2008.06.013
[10] Louf, B., A new family of bijections for planar maps, J. Combin. Theory Ser. A, 168, 374-395 (2019) · Zbl 1421.05033 · doi:10.1016/j.jcta.2019.06.006
[11] Eynard, B.: Counting Surfaces. Progress in Mathematical Physics, vol. 70, p. 414. Birkhäuser/Springer, [Cham] (2016). doi:10.1007/978-3-7643-8797-6. CRM Aisenstadt chair lectures · Zbl 1338.81005
[12] Tutte, WT, A census of planar maps, Can J. Math., 15, 249-271 (1963) · Zbl 0115.17305 · doi:10.4153/CJM-1963-029-x
[13] Ambjørn, J.; Chekhov, L.; Kristjansen, CF; Makeenko, Y., Matrix model calculations beyond the spherical limit, Nuclear Phys. B, 404, 1-2, 127-172 (1993) · Zbl 1043.81636 · doi:10.1016/0550-3213(93)90476-6
[14] Eynard, B.: Formal matrix integrals and combinatorics of maps. In: Random Matrices, Random Processes and Integrable Systems. CRM Ser. Math. Phys., pp. 415-442. Springer, Berlin (2011). doi:10.1007/978-1-4419-9514-8_6 · Zbl 1257.81052
[15] Mirzakhani, M., Simple geodesics and Weil-Petersson volumes of moduli spaces of bordered Riemann surfaces, Invent. Math., 167, 1, 179-222 (2007) · Zbl 1125.30039 · doi:10.1007/s00222-006-0013-2
[16] Eynard, B.; Orantin, N., Invariants of algebraic curves and topological expansion, Commun. Number Theory Phys., 1, 2, 347-452 (2007) · Zbl 1161.14026 · doi:10.4310/CNTP.2007.v1.n2.a4
[17] Eynard, B., Orantin, N.: Weil-petersson volume of moduli spaces, Mirzakhani’s recursion and matrix models (2007). arXiv:0705.3600 · Zbl 1161.14026
[18] Le Gall, J-F, Brownian geometry, Jpn. J. Math., 14, 2, 135-174 (2019) · Zbl 1471.60016 · doi:10.1007/s11537-019-1821-7
[19] Le Gall, J.-F., Miermont, G.: Scaling limits of random trees and planar maps. In: Probability and Statistical Physics in Two and More Dimensions. Clay Math. Proc., vol. 15, pp. 155-211. American Mathematical Society, Providence, RI (2012) · Zbl 1321.05240
[20] Mirzakhani, M., Growth of Weil-Petersson volumes and random hyperbolic surfaces of large genus, J. Differ. Geom., 94, 2, 267-300 (2013) · Zbl 1270.30014 · doi:10.4310/jdg/1367438650
[21] Budzinski, T., Louf, B.: Local limits of uniform triangulations in high genus. Inventiones Math., pp. 1-47 (2020) · Zbl 1461.05182
[22] Louf, B.: Planarity and non-separating cycles in uniform high genus quadrangulations (2020). arXiv:2012.06512 · Zbl 1489.60017
[23] Bernardi, O.; Fusy, E., A bijection for triangulations, quadrangulations, pentagulations, etc, J. Combin. Theory Ser. A, 119, 1, 218-244 (2012) · Zbl 1232.05019 · doi:10.1016/j.jcta.2011.08.006
[24] Bernardi, O.; Fusy, E., Unified bijections for maps with prescribed degrees and girth, J. Combin. Theory Ser. A, 119, 6, 1351-1387 (2012) · Zbl 1242.05124 · doi:10.1016/j.jcta.2012.03.007
[25] Bouttier, J.; Guitter, E., On irreducible maps and slices, Combin. Probab. Comput., 23, 6, 914-972 (2014) · Zbl 1303.05086 · doi:10.1017/S0963548314000340
[26] Bouttier, J.; Guitter, E., A note on irreducible maps with several boundaries, Electron. J. Combin., 21, 1, 1-2318 (2014) · Zbl 1300.05070 · doi:10.37236/3443
[27] Budd, T.: On polynomials counting essentially irreducible maps. Electron. J. Combin. 29(2), P2.45 (2022). doi:10.37236/9746 · Zbl 1491.05064
[28] Do, N.: The asymptotic Weil-Petersson form and intersection theory on \(\cal{M}_{g,n} (2010)\). arXiv:1010.4126. Accessed 11 Nov 2018
[29] Andersen, J.E., Borot, G., Charbonnier, S., Giacchetto, A., Lewański, D., Wheeler, C.: On the Kontsevich Geometry of the Combinatorial Teichmüller space (2020). arXiv:2010.11806
[30] Rivin, I.: Intrinsic geometry of convex ideal polyhedra in hyperbolic 3-space (1992). arXiv:math/0005234. Accessed 17 Oct 2018 · Zbl 0823.52008
[31] Rivin, I.: A Characterization of Ideal Polyhedra in Hyperbolic 3-Space. Ann. Math. 143(1), 51-70 (1996). doi:10.2307/2118652. Accessed 17 Dec 2018 · Zbl 0874.52006
[32] David, F.; Eynard, B., Planar maps, circle patterns and 2D gravity, Ann. Inst. Henri Poincaré D, 1, 2, 139-183 (2014) · Zbl 1297.52007 · doi:10.4171/AIHPD/5
[33] Charbonnier, S., David, F., Eynard, B.: Local properties of the random Delaunay triangulation model and topological 2d gravity (2017). arXiv:1701.02580. Accessed 31 Oct 2018 · Zbl 1426.52010
[34] Do, N.: Moduli spaces of hyperbolic surfaces and their Weil-Petersson volumes. In: Handbook of Moduli. Vol. I. Adv. Lect. Math. (ALM), vol. 24, pp. 217-258. Int. Press, Somerville, MA (2013) · Zbl 1322.32011
[35] Do, N.; Norbury, P., Weil-Petersson volumes and cone surfaces, Geom. Dedicata, 141, 93-107 (2009) · Zbl 1177.32008 · doi:10.1007/s10711-008-9345-y
[36] Itzykson, C.; Zuber, J-B, Combinatorics of the modular group. II. The Kontsevich integrals, Int. J. Mod. Phys. A, 7, 23, 5661-5705 (1992) · Zbl 0972.14500 · doi:10.1142/S0217751X92002581
[37] Zograf, P.: Weil-petersson volumes of moduli spaces of curves and the genus expansion in two dimensional gravity (1998). arXiv:math/9811026
[38] Dubrovin, B., Zhang, Y.: Normal forms of hierarchies of integrable pdes, frobenius manifolds and gromov-witten invariants (2001). arXiv:math/0108160
[39] Okuyama, K.; Sakai, K., Jt gravity, kdv equations and macroscopic loop operators, J. High Energy Phys., 2020, 1, 156 (2020) · Zbl 1435.83115 · doi:10.1007/JHEP01(2020)156
[40] Watson, G.N.: A Treatise on the Theory of Bessel Functions. Cambridge Mathematical Library. Cambridge University Press, Cambridge (1995). https://books.google.nl/books?id=Mlk3FrNoEVoC · Zbl 0849.33001
[41] Schlenker, J-M, Métriques sur les polyèdres hyperboliques convexes, J. Differ. Geom., 48, 2, 323-405 (1998) · Zbl 0912.52008 · doi:10.4310/jdg/1214460799
[42] Fillastre, F., Polyhedral hyperbolic metrics on surfaces, Geom. Dedicata, 134, 177-196 (2008) · Zbl 1153.57012 · doi:10.1007/s10711-008-9252-2
[43] Bao, X.; Bonahon, F., Hyperideal polyhedra in hyperbolic 3-space, Bull. Soc. Math. France, 130, 3, 457-491 (2002) · Zbl 1033.52009 · doi:10.24033/bsmf.2426
[44] Springborn, BA, A variational principle for weighted Delaunay triangulations and hyperideal polyhedra, J. Differ. Geom., 78, 2, 333-367 (2008) · Zbl 1181.52018 · doi:10.4310/jdg/1203000270
[45] Bobenko, AI; Springborn, BA, Variational principles for circle patterns and Koebe’s theorem, Trans. Am. Math. Soc., 356, 2, 659-689 (2004) · Zbl 1044.52009 · doi:10.1090/S0002-9947-03-03239-2
[46] Schlenker, J.-M.: Hyperbolic manifolds with polyhedral boundary (2001). arXiv:math/0111136
[47] Ambjørn, J.; Budd, TG, Multi-point functions of weighted cubic maps, Ann. Inst. Henri Poincaré D, 3, 1, 1-44 (2016) · Zbl 1331.05189 · doi:10.4171/AIHPD/23
[48] Norbury, P., Counting lattice points in the moduli space of curves, Math. Res. Lett., 17, 3, 467-481 (2010) · Zbl 1225.32023 · doi:10.4310/MRL.2010.v17.n3.a7
[49] Kaufmann, R.; Manin, Y.; Zagier, D., Higher Weil-Petersson volumes of moduli spaces of stable \(n\)-pointed curves, Commun. Math. Phys., 181, 3, 763-787 (1996) · Zbl 0890.14011 · doi:10.1007/BF02101297
[50] Bertola, M.; Dubrovin, B.; Yang, D., Correlation functions of the KdV hierarchy and applications to intersection numbers over \(\overline{\cal{M}}_{g, n} \), Physica D, 327, 30-57 (2016) · Zbl 1373.37153 · doi:10.1016/j.physd.2016.04.008
[51] Bouttier, J.: Planar maps and random partitions. Habilitation thesis, Université Paris-Sud (2019). arXiv:1912.06855
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.