×

Global solvability for nonlinear wave equations with singular potential. (English) Zbl 1523.35222

Summary: In this work we consider the so-called Strauss conjecture for 3D nonlinear wave equation with singular potential and provide a positive answer concerning the global existence part. The key point is to exploit the additional decay of the solution away from the light cone. For this purpose we derive appropriate conformal type energy estimates under repulsively condition on the potential. However, it is not obvious whether functions in a domain of the Friedrichs extension of the minus Laplacian with singular potential have \(H^2\)-regularity or not. To clarify this issue, we make use of the essential self-adjointness of the Schrödinger operator to obtain the desired property.

MSC:

35L71 Second-order semilinear hyperbolic equations
35B33 Critical exponents in context of PDEs
35L15 Initial value problems for second-order hyperbolic equations
35L81 Singular hyperbolic equations

References:

[1] John, F., Blow-up of solutions of nonlinear wave equations in three space dimensions, Manuscr. Math., 28, 1-3, 235-268 (1979) · Zbl 0406.35042
[2] Schaeffer, J., Finite-time blow-up for \(u_{t t} - \operatorname{\Delta} u = H( u_r, u_t)\), Commun. Partial Differ. Equ., 11, 5, 513-543 (1986) · Zbl 0592.35088
[3] Sideris, T. C., Nonexistence of global solutions to semilinear wave equations in high dimensions, J. Differ. Equ., 52, 3, 378-406 (1984) · Zbl 0555.35091
[4] Yordanov, B. T.; Zhang, Q. S., Finite time blow up for critical wave equations in high dimensions, J. Funct. Anal., 231, 2, 361-374 (2006) · Zbl 1090.35126
[5] Zhou, Y., Blow up of solutions to semilinear wave equations with critical exponent in high dimensions, Chin. Ann. Math., Ser. B, 28, 2, 205-212 (2007) · Zbl 1145.35439
[6] Kurokawa, Y.; Takamura, H.; Wakasa, K., The blow-up and lifespan of solutions to systems of semilinear wave equation with critical exponents in high dimensions, Differ. Integral Equ., 25, 3-4, 363-382 (2012) · Zbl 1265.35208
[7] Lai, N.-A.; Zhou, Y., An elementary proof of Strauss conjecture, J. Funct. Anal., 267, 5, 1364-1381 (2014) · Zbl 1304.35391
[8] Georgiev, V.; Lindblad, H.; Sogge, C. D., Weighted Strichartz estimates and global existence for semilinear wave equations, Am. J. Math., 119, 6, 1291-1319 (1997) · Zbl 0893.35075
[9] Tataru, D., Strichartz estimates in the hyperbolic space and global existence for the semilinear wave equation, Trans. Am. Math. Soc., 353, 2, 795-807 (2001) · Zbl 0956.35088
[10] Georgiev, V., Semilinear Hyperbolic Equations, MSJ Memoirs, vol. 7 (2005), Mathematical Society of Japan: Mathematical Society of Japan Tokyo, with a preface by Y. Shibata · Zbl 1080.35118
[11] Lai, N.-A.; Zhou, Y., An elementary proof of Strauss conjecture, J. Funct. Anal., 267, 5, 1364-1381 (2014) · Zbl 1304.35391
[12] Strauss, W. A.; Tsutaya, K., Existence and blow up of small amplitude nonlinear waves with a negative potential, Discrete Contin. Dyn. Syst., 3, 2, 175-188 (1997) · Zbl 0948.35084
[13] Georgiev, V.; Heiming, C.; Kubo, H., Supercritical semilinear wave equation with non-negative potential, Commun. Partial Differ. Equ., 26, 11-12, 2267-2303 (2001) · Zbl 0994.35091
[14] Yordanov, B.; Zhang, Q. S., Finite-time blowup for wave equations with a potential, SIAM J. Math. Anal., 36, 5, 1426-1433 (2005) · Zbl 1074.35075
[15] Karageorgis, P., Existence and blow up of small-amplitude nonlinear waves with a sign-changing potential, J. Differ. Equ., 219, 2, 259-305 (2005) · Zbl 1109.35077
[16] Burq, N.; Planchon, F.; Stalker, J. G.; Tahvildar-Zadeh, A. S., Strichartz estimates for the wave and Schrödinger equations with the inverse-square potential, J. Funct. Anal., 203, 2, 519-549 (2003) · Zbl 1030.35024
[17] Planchon, F.; Stalker, J. G.; Tahvildar-Zadeh, A. S., \( L^p\) estimates for the wave equation with the inverse-square potential, Discrete Contin. Dyn. Syst., 9, 2, 427-442 (2003) · Zbl 1031.35092
[18] Dai, W.; Fang, D.; Wang, C., Long-time existence for semilinear wave equations with the inverse-square potential, J. Differ. Equ., 309, 98-141 (2022) · Zbl 1480.35296
[19] Miao, C.; Zhang, J.; Zheng, J., Strichartz estimates for wave equation with inverse square potential, Commun. Contemp. Math., 15, 6, Article 1350026 pp. (2013) · Zbl 1284.35357
[20] Dai, W.; Kubo, H.; Sobajima, M., Blow-up for Strauss type wave equation with damping and potential, Nonlinear Anal., Real World Appl., 57, 15 (2021) · Zbl 1456.35045
[21] Simon, B., Essential self-adjointness of Schrödinger operators with singular potentials, Arch. Ration. Mech. Anal., 52, 44-48 (1973) · Zbl 0277.47007
[22] Lindblad, H.; Sterbenz, J., Global stability for charged-scalar fields on Minkowski space, Int. Math. Res. Pap., Article 52976 pp. (2006) · Zbl 1123.35047
[23] Lai, N.-A., Weighted \(L^2- L^2\) estimate for wave equation in \(\mathbb{R}^3\) and its applications, Adv. Stud. Pure Math., 85, 12, 269-279 (2020) · Zbl 1469.35062
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.