×

Material behavior of the hexagonal alpha phase of a titanium alloy identified from nanoindentation tests. (English) Zbl 1278.74027

Summary: This article focuses on the numerical modeling of nanoindentation tests performed on the hexagonal \(\alpha\) phase of Ti-5553 alloy in order to identify its mechanical behavior. The main goal consists in determining the relative strength of the slip modes in the \(\alpha\) phase of Ti-5553. This work was performed using an elastoviscoplastic crystal plasticity-based constitutive law. The difficulties in determining the slip systems that can be activated and their corresponding critical resolved shear stresses (CRSS) are discussed. Numerical predictions are compared to experimental nanoindentation curves.

MSC:

74E15 Crystalline structure
74C20 Large-strain, rate-dependent theories of plasticity
74S05 Finite element methods applied to problems in solid mechanics
74M25 Micromechanics of solids

Software:

UMAT; ABAQUS
Full Text: DOI

References:

[1] Ahn, J. H.; Jeon, E. C.; Choi, Y.; Lee, Y. H.; Kwon, D., Derivation of tensile flow properties of thin films using nanoindentation technique, Curr. Appl. Phys., 2, 525-531 (2002)
[2] Balasubramanian, S.; Anand, L., Plasticity of initially textured hexagonal polycrystals at high homologous temperatures: application to titanium, Acta Mater., 50, 133-148 (2002)
[3] Baranov, M. A.; Dubov, E. A., Definition of elastic modules of ordered hexagonal crystals, EPhTJ, 1, 28-33 (2005)
[4] Bassani, J. L.; Wu, T., Latent hardening in single crystals 2, analytical characterization and predictions, Proc. Roy. Soc. Lond. A Math. Phys. Sci., 435, 21-41 (1991) · Zbl 0731.73021
[5] Bocciarelli, M.; Bolzon, G.; Maier, G., Parameter identification in anisotropic elastoplasticity by indentation and imprint mapping, Mech. Mater., 37, 855-868 (2005)
[6] Chan, K. S., A micromechanical analysis of the yielding behavior of individual widmanstätten colonies of an α + β titanium alloy. Metall, Mater. Trans. A, 35, 3409-3422 (2004)
[7] Delfosse, J., 2005. Forgeage β du Ti17. Propriétés en fatigue, Paris, Ph.D. thesis.; Delfosse, J., 2005. Forgeage β du Ti17. Propriétés en fatigue, Paris, Ph.D. thesis.
[8] Dick, T., 2006. Modélisation multiéchelle du phénomène de fretting dans le contact aube-disque, Paris, Ph.D. thesis.; Dick, T., 2006. Modélisation multiéchelle du phénomène de fretting dans le contact aube-disque, Paris, Ph.D. thesis.
[9] Dyduch, M.; Habraken, A. M.; Cescotto, S., Automatic adaptive remeshing for numerical simulations of metal forming, Comput. Method. Appl. M., 101, 283-298 (1992) · Zbl 0777.73064
[10] Feaugas, X.; Pilvin, P.; Clavel, M., Cyclic deformation behaviour of an α/β titanium alloy - II. Internal stresses and micromechanic modeling, Acta Mater., 45, 2703-2714 (1997)
[11] Fischer-Cripps, A. C., Nanoindentation (2004), Springer: Springer New York
[12] Fundenberger, J. J.; Philippe, M. J.; Wagner, F.; Esling, C., Acta Mater., 45, 4041-4055 (1997)
[13] Gerday, A.F., 2009. Mechanical behavior of Ti-5553 alloy. Modeling of representative cells, University of Liège, Belgium. Ph.D. thesis. Available from: http://bictel.ulg.ac.be/ETD-db/collection/available/ULgetd-07142009-142010/; Gerday, A.F., 2009. Mechanical behavior of Ti-5553 alloy. Modeling of representative cells, University of Liège, Belgium. Ph.D. thesis. Available from: http://bictel.ulg.ac.be/ETD-db/collection/available/ULgetd-07142009-142010/
[14] Gerday, A. F.; Ben Bettaieb, M.; Duchêne, L.; Clement, N.; Diarra, H.; Habraken, A. M., Interests and limitations of nanoindentation for bulk multiphase material identification. Application on β phase of Ti-5553, Acta Mater., 57, 5186-5195 (2009)
[15] Grandjean, H., 2006. Graduation work, Université catholique de Louvain-la-Neuve, Belgium.; Grandjean, H., 2006. Graduation work, Université catholique de Louvain-la-Neuve, Belgium.
[16] Habraken, A. M.; Cescotto, S., Contact between deformable solids, the fully coupled approach, Math. Comput. Model., 28, 153-169 (1998)
[17] Huang, Y., A User-material Subroutine Incorporating Single Crystal Plasticity in the Abaqus Finite Element Program, Internal Report (1991), Harvard University
[18] Hutchinson, J. W., Bounds and self-consistent estimates for creep of polycrystalline materials, P. Roy. Soc. Lond. A Mat, 348, 101-127 (1976) · Zbl 0319.73059
[19] Kysar, J. W., Continuum simulations of directional dependence of crack growth along copper/sapphire bicrystal interface. Part I: experiments and crystal plasticity background, J. Mech. Phys. Solids, 49, 1099-1128 (2001) · Zbl 1162.74447
[20] Liu, Y.; Wang, B.; Yoshino, M.; Roy, S.; Lu, H.; Komanduri, R., Combined numerical simulation and nanoindentation for determining mechanical properties of single crystal copper at mesoscale, J. Mech. Phys. Solids, 53, 2718-2741 (2005) · Zbl 1120.74398
[21] Medina Perilla, J. A.; Gil Sevillano, J., Two-dimensional sections of the yield locus of a Ti-6Al-4V alloy with a strong transverse-type crystallographic alpha-texture, Mat. Sci. Eng. A, 201, 103-110 (1995)
[22] Nag, S.; Banerjee, R.; Srinivasan, R.; Hwang, J. Y.; Harper, M.; Fraser, H. L., ω-Assisted nucleation and growth of α precipitates in the Ti-5Al-5Mo-5V-3Cr-0.5Fe β titanium alloy, Acta Mater., 57, 2136-2147 (2009)
[23] Nye, J., Propriétés Physiques des Cristaux (1961), Dunod editions: Dunod editions Paris
[24] Oliver, W. C.; Pharr, G. M., An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res., 7, 1564-1583 (1992)
[25] Pelletier, H.; Krier, J.; Cornet, A.; Mille, P., Limits of using bilinear stress-strain curve for finite element modeling of nanoindentation response on bulk materials, Thin Solid Films, 379, 147-155 (2000)
[26] Pulecio, S. A.R.; Farias, M. C.M.; Souza, R. M., Analysis of the tip roundness effects on the micro- and macroindentation response of elastic-plastic materials, J. Mater. Res., 24, 1037-1044 (2009)
[27] Sanchez, P.; Pochettino, A.; Chauveau, T.; Bacroix, B., Torsion texture development of zirconium alloys, J. Nucl. Mater., 298, 329-339 (2001)
[28] Sasaki, T.; Yang, M.; Fukushima, S.; Tsukano, R., Development of the CAE-assisted nano-indentation method for the evaluation of the anisotropic mechanical-properties of thin films, J. Mater. Process. Tech., 151, 263-267 (2004)
[29] Siddiq, A.; Schmauder, S.; Huang, Y., Fracture of bicrystal metal/ceramic interfaces: a study via the mechanism-based strain gradient crystal plasticity theory, Int. J. Plasticity, 23, 665-689 (2007) · Zbl 1110.74049
[30] Tabor, D., The Hardness of Metals (1951), Clarendon press: Clarendon press Oxford
[31] Trinité, V., 2006. Etude théorique des phases du titane, France, Ph.D. thesis.; Trinité, V., 2006. Etude théorique des phases du titane, France, Ph.D. thesis.
[32] Wang, Y.; Raabe, D.; Klüber, C.; Roters, F., Orientation dependence of nanoindentation pile-up patterns and of nanoindentation microtextures in copper single crystals, Acta Mater., 52, 2229-2238 (2004)
[33] Xu, Z.-H.; Li, X., Effects of indenter geometry and material properties on the correction factor of Sneddon’s relationship for nanoindentation of elastic and elastic-plastic materials, Acta Mater., 56, 1399-1405 (2008)
[34] Yan, J.; Karlsson, A. M.; Chen, X., Determining plastic properties of a material with residual stress by using conical indentation, Int. J. Solids Struct., 44, 3720-3737 (2007) · Zbl 1178.74072
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.