×

Multi-patch parameterization method for isogeometric analysis using singular structure of cross-field. (English) Zbl 07839881

Summary: Isogeometric analysis is an innovative numerical paradigm with the potential to bridge the gap between Computer-Aided Design and Computer-Aided Engineering. However, constructing analysis-suitable parameterizations from a given boundary representation remains a critical challenge in the isogeometric design-through-analysis pipeline, particularly for computational domains with complex geometries, such as high-genus cases. To tackle this issue, we propose a multi-patch parameterization method for computational domains grounded in the singular structure of cross-fields. Initially, the vector field functions over the computational domain are solved using the boundary element method. The cross-field is then obtained through the one-to-one mapping between the vector field and the cross-field. Subsequently, we acquire the position information and topological connection relations of singularities and streamlines by analyzing the singular structure of the cross-field. Moreover, we introduce a simple and effective method for computing streamlines. We propose a novel segmentation strategy to divide the computational domain into several quadrilateral NURBS sub-patches. Once the multi-patch structure is established, we develop two methods to construct analysis-suitable multi-patch parameterizations. The first method is a direct generalization of the barrier function-based approach, while the second method yields smoother parameterizations by incorporating the interface control points of sub-patches into the optimization model. Numerical experiments demonstrate the effectiveness and robustness of the proposed method.

MSC:

65-XX Numerical analysis
74-XX Mechanics of deformable solids

Software:

SQPlab; PLCP
Full Text: DOI

References:

[1] Hughes, T. J.; Cottrell, J. A.; Bazilevs, Y., Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput. Methods Appl. Mech. Eng., 194, 39-41, 4135-4195, 2005 · Zbl 1151.74419
[2] Cottrell, J. A.; Hughes, T. J.; Bazilevs, Y., Isogeometric Analysis: Toward Integration of CAD and FEA, 2009, John Wiley & Sons · Zbl 1378.65009
[3] Cottrell, J. A.; Reali, A.; Bazilevs, Y.; Hughes, T. J., Isogeometric analysis of structural vibrations, Comput. Methods Appl. Mech. Eng., 195, 41-43, 5257-5296, 2006 · Zbl 1119.74024
[4] Bazilevs, Y.; Calo, V. M.; Hughes, T. J.; Zhang, Y., Isogeometric fluid-structure interaction: theory, algorithms, and computations, Comput. Mech., 43, 3-37, 2008 · Zbl 1169.74015
[5] Wall, W. A.; Frenzel, M. A.; Cyron, C., Isogeometric structural shape optimization, Comput. Methods Appl. Mech. Eng., 197, 33-40, 2976-2988, 2008 · Zbl 1194.74263
[6] Seo, Y.-D.; Kim, H.-J.; Youn, S.-K., Isogeometric topology optimization using trimmed spline surfaces, Comput. Methods Appl. Mech. Eng., 199, 49-52, 3270-3296, 2010 · Zbl 1225.74068
[7] Cohen, E.; Martin, T.; Kirby, R.; Lyche, T.; Riesenfeld, R., Analysis-aware modeling: understanding quality considerations in modeling for isogeometric analysis, Comput. Methods Appl. Mech. Eng., 199, 5-8, 334-356, 2010 · Zbl 1227.74109
[8] Xu, G.; Mourrain, B.; Duvigneau, R.; Galligo, A., Parameterization of computational domain in isogeometric analysis: methods and comparison, Comput. Methods Appl. Mech. Eng., 200, 23-24, 2021-2031, 2011 · Zbl 1228.65232
[9] Pilgerstorfer, E.; Jüttler, B., Bounding the influence of domain parameterization and knot spacing on numerical stability in Isogeometric Analysis, Comput. Methods Appl. Mech. Eng., 268, 589-613, 2014 · Zbl 1295.65116
[10] Xiao, Z.; He, S.; Xu, G.; Chen, J.; Wu, Q., A boundary element-based automatic domain partitioning approach for semi-structured quad mesh generation, Eng. Anal. Bound. Elem., 113, 133-144, 2020 · Zbl 1464.65260
[11] Ji, Y.; Yu, Y.-Y.; Wang, M.-Y.; Zhu, C.-G., Constructing high-quality planar nurbs parameterization for isogeometric analysis by adjustment control points and weights, J. Comput. Appl. Math., 396, Article 113615 pp., 2021 · Zbl 1470.65022
[12] Xu, G.; Mourrain, B.; Duvigneau, R.; Galligo, A., Optimal analysis-aware parameterization of computational domain in 3D isogeometric analysis, Comput. Aided Des., 45, 4, 812-821, 2013
[13] Farin, G.; Hansford, D., Discrete Coons patches, Comput. Aided Geom. Des., 16, 7, 691-700, 1999 · Zbl 0997.65033
[14] Xu, G.; Mourrain, B.; Duvigneau, R.; Galligo, A., Constructing analysis-suitable parameterization of computational domain from cad boundary by variational harmonic method, J. Comput. Phys., 252, 275-289, 2013 · Zbl 1349.65079
[15] Hinz, J.; Möller, M.; Vuik, C., Elliptic grid generation techniques in the framework of isogeometric analysis applications, Comput. Aided Geom. Des., 65, 48-75, 2018 · Zbl 1506.65037
[16] Ji, Y.; Chen, K.; Möller, M.; Vuik, C., On an improved PDE-based elliptic parameterization method for isogeometric analysis using preconditioned Anderson acceleration, Comput. Aided Geom. Des., 102, Article 102191 pp., 2023 · Zbl 07686152
[17] Nguyen, T.; Jüttler, B., Parameterization of contractible domains using sequences of harmonic maps, (Curves and Surfaces, vol. 6920, 2010), 501-514 · Zbl 1352.65073
[18] Nian, X.; Chen, F., Planar domain parameterization for isogeometric analysis based on Teichmüller mapping, Comput. Methods Appl. Mech. Eng., 311, 41-55, 2016 · Zbl 1439.65189
[19] Pan, M.; Chen, F.; Tong, W., Low-rank parameterization of planar domains for isogeometric analysis, Comput. Aided Geom. Des., 63, 1-16, 2018 · Zbl 1441.65016
[20] Ugalde, I. A.; Mederos, V. H.; Sánchez, P. B.; Flores, G. G., Injectivity of B-spline biquadratic maps, Comput. Methods Appl. Mech. Eng., 341, 586-608, 2018 · Zbl 1440.65016
[21] Ji, Y.; Wang, M.-Y.; Pan, M.-D.; Zhang, Y.; Zhu, C.-G., Penalty function-based volumetric parameterization method for isogeometric analysis, Comput. Aided Geom. Des., 94, Article 102081 pp., 2022 · Zbl 1489.65029
[22] Xu, J.; Chen, F.; Deng, J., Two-dimensional domain decomposition based on skeleton computation for parameterization and isogeometric analysis, Comput. Methods Appl. Mech. Eng., 284, 541-555, 2015 · Zbl 1425.65189
[23] Bastl, B.; Slabá, K., Planar multi-patch domain parameterization for isogeometric analysis based on evolution of fat skeleton, Comput. Methods Appl. Mech. Eng., 385, Article 114045 pp., 2021 · Zbl 1502.65100
[24] Xiao, S.; Kang, H.; Fu, X.-M.; Chen, F., Computing IGA-suitable planar parameterizations by PolySquare-enhanced domain partition, Comput. Aided Geom. Des., 62, 29-43, 2018 · Zbl 1505.65104
[25] Buchegger, F.; Jüttler, B., Planar multi-patch domain parameterization via patch adjacency graphs, Comput. Aided Des., 82, 2-12, 2017
[26] Xu, G.; Li, M.; Mourrain, B.; Rabczuk, T.; Xu, J.; Bordas, S. P., Constructing IGA-suitable planar parameterization from complex CAD boundary by domain partition and global/local optimization, Comput. Methods Appl. Mech. Eng., 328, 175-200, 2018 · Zbl 1439.65200
[27] Chen, L.; Xu, G.; Wang, S.; Shi, Z.; Huang, J., Constructing volumetric parameterization based on directed graph simplification of \(l_1\) polycube structure from complex shapes, Comput. Methods Appl. Mech. Eng., 351, 422-440, 2019 · Zbl 1441.65115
[28] Chen, L.; Bu, N.; Jin, Y.; Xu, G.; Li, B., Construction of IGA-suitable volume parametric models by the segmentation-mapping-merging mechanism of design features, Comput. Aided Des., 146, Article 103228 pp., 2022
[29] Hertzmann, A.; Zorin, D., Illustrating smooth surfaces, (Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, 2000), 517-526
[30] Ray, N.; Vallet, B.; Li, W. C.; Lévy, B., N-symmetry direction field design, ACM Trans. Graph., 27, 2, 1-13, 2008
[31] Kowalski, N.; Ledoux, F.; Frey, P., Automatic domain partitioning for quadrilateral meshing with line constraints, Eng. Comput., 31, 405-421, 2015
[32] Brebbia, C. A.; Dominguez, J., Boundary Elements: An Introductory Course, 1994, WIT press
[33] Brebbia, C. A.; Telles, J. C.F.; Wrobel, L. C., Boundary Element Techniques: Theory and Applications in Engineering, 2012, Springer Science & Business Media
[34] Tricoche, X.; Scheuermann, G.; Hagen, H., Continuous topology simplification of planar vector fields, (Proceedings Visualization, 2001. VIS’01, 2001, IEEE), 159-166
[35] Tricoche, X., Vector and Tensor Field Topology Simplification, Tracking, and Visualization, 2002, Universität Kaiserslautern. Fachbereich Informatik · Zbl 1103.68912
[36] Bonnans, J.-F.; Gilbert, J. C.; Lemaréchal, C.; Sagastizábal, C. A., Numerical Optimization: Theoretical and Practical Aspects, 2006, Springer Science & Business Media · Zbl 1108.65060
[37] Pan, M.; Chen, F.; Tong, W., Volumetric spline parameterization for isogeometric analysis, Comput. Methods Appl. Mech. Eng., 359, Article 112769 pp., 2020 · Zbl 1441.65021
[38] Collin, A.; Sangalli, G.; Takacs, T., Analysis-suitable G1 multi-patch parametrizations for C1 isogeometric spaces, Comput. Aided Geom. Des., 47, 93-113, 2016 · Zbl 1418.65017
[39] Pan, M.; Zou, R.; Tong, W.; Guo, Y.; Chen, F., G1-smooth planar parameterization of complex domains for isogeometric analysis, Comput. Methods Appl. Mech. Eng., 417, Article 116330 pp., 2023 · Zbl 1536.65016
[40] Xu, G.; Li, B.; Shu, L.; Chen, L.; Xu, J.; Khajah, T., Efficient r-adaptive isogeometric analysis with Winslow’s mapping and monitor function approach, J. Comput. Appl. Math., 351, 186-197, 2019 · Zbl 1524.65869
[41] Ji, Y.; Wang, M.-Y.; Wang, Y.; Zhu, C.-G., Curvature-based r-adaptive planar NURBS parameterization method for isogeometric analysis using bi-level approach, Comput. Aided Des., 150, Article 103305 pp., 2022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.