×

The McKinsey-Tarski theorem for locally compact ordered spaces. (English) Zbl 1483.54016

The modal logic \(\mathsf{L}(X)\) of a topological space \(X\) is the set of valid modal formulas, where box is interior and diamond is closure. The McKinsey-Tarski theorem says that the modal logic of any metrizable space without isolated points is \(\mathsf{S}4\). Various analogs of the theorem are known. The main result of the paper, Theorem 3.12, extends the McKinsey-Tarski Theorem to any nonempty locally compact space without isolated points which is a GO-space, that is, a subspace of a topological space coming from a linear order. It is open whether local compactness can be removed. Then Theorem 5.10 computes \(\mathsf{L}(X)\) for each nonempty locally compact GO-space.

MSC:

54F05 Linearly ordered topological spaces, generalized ordered spaces, and partially ordered spaces
54D45 Local compactness, \(\sigma\)-compactness
03B45 Modal logic (including the logic of norms)
54G12 Scattered spaces
03B55 Intermediate logics
Full Text: DOI

References:

[1] Abramsky, S., Domain theory in logical form. Annals of Pure and Applied Logic, vol. 51 (1991), no. 1-2, pp. 1-77. · Zbl 0737.03006
[2] Baltag, A., Bezhanishvili, N., Özgün, A., and Smets, S., Justified belief and the topology of evidence, Logic, Language, Information, and Computation—23rd International Workshop, WoLLIC (Väänänen, J. A., Hirvonen, Å., and De Queiroz, R. J. G. B., editors), Lecture Notes in Computer Science, vol. 9803, Springer, New York, 2016, pp. 83-103. · Zbl 1478.03022
[3] Baltag, A., Gierasimczuk, N., and Smets, S., On the solvability of inductive problems: A study in epistemic topology, Proceedings of the 15th Conference on Theoretical Aspects of Rationality and Knowledge, ENTCS, 2015, pp. 81-98. · Zbl 1483.68367
[4] Bezhanishvili, G., Bezhanishvili, N., Lucero-Bryan, J., and Van Mill, J., Krull dimension in modal logic. The Journal of Symbolic Logic, vol. 82 (2017), no. 4, pp. 1356-1386. · Zbl 1421.03007
[5] Bezhanishvili, G., Bezhanishvili, N., Lucero-Bryan, J., and Van Mill, J., A new proof of the McKinsey-Tarski theorem. Studia Logica, vol. 106 (2018), pp. 1291-1311. · Zbl 1437.03084
[6] Bezhanishvili, G., Bezhanishvili, N., Lucero-Bryan, J., and Van Mill, J., On modal logics arising from scattered locally compact Hausdorff spaces. The Annals of Pure and Applied Logic, vol. 170 (2019), no. 5, pp. 558-577. · Zbl 1472.03015
[7] Bezhanishvili, G., Bezhanishvili, N., Lucero-Bryan, J., and Van Mill, J., Tree-like constructions in topology and modal logic. Archive for Mathematical Logic, vol. 60 (2021), pp. 265-299. · Zbl 1500.03005
[8] Bezhanishvili, G., Bezhanishvili, N., Lucero-Bryan, J., and Van Mill, J., Characterizing existence of a measurable cardinal via modal logic. The Journal of Symbolic Logic, 2021, doi: 10.1017/jsl.2021.5. · Zbl 1529.03142
[9] Bezhanishvili, G., Gabelaia, D., and Lucero-Bryan, J., Modal logics of metric spaces. The Review of Symbolic Logic, vol. 8 (2015), no. 1, pp. 178-191. · Zbl 1371.03022
[10] Bezhanishvili, G. and Gehrke, M., Completeness of S4 with respect to the real line: Revisited. The Annals of Pure and Applied Logic, vol. 131 (2005), no. 1-3, pp. 287-301. · Zbl 1066.03032
[11] Bezhanishvili, G. and Harding, J., Modal logics of Stone spaces. Order, vol. 29 (2012), no. 2, pp. 271-292. · Zbl 1259.03030
[12] Brecht, M. and Yamamoto, A., Topological properties of concept spaces. Information and Computation, vol. 208 (2010), no. 4, pp. 327-340. · Zbl 1192.68428
[13] Ceder, J. G., On maximally resolvable spaces. Fundamenta Mathematicae, vol. 55 (1964), pp. 87-93. · Zbl 0139.40401
[14] Chagrov, A. and Zakharyaschev, M., Modal Logic, Oxford University Press, Oxford, 1997. · Zbl 0871.03007
[15] Eckertson, F. W., Resolvable, not maximally resolvable spaces. Topology and Its Applications, vol. 79 (1997), pp. 1-11. · Zbl 0918.54035
[16] Engelking, R.. General Topology, Heldermann Verlag, Berlin, 1989. · Zbl 0684.54001
[17] Goubault, É., Ledent, J., and Rajsbaum, S., A simplicial complex model for dynamic epistemic logic to study distributed task computability, Proceedings of the Ninth International Symposium on Games, Automata, Logics, and Formal Verification, Electronic Proceedings in Theoretical Computer Science, vol. 277, 2018, pp. 73-87. · Zbl 1497.03032
[18] Herlihy, M., Kozlov, D., and Rajsbaum, S., Distributed Computing Through Combinatorial Topology, Elsevier/Morgan Kaufmann, Waltham, MA, 2014. · Zbl 1341.68004
[19] Herrlich, H., Ordnungsfähigkeit total-diskontinuierlicher Räume. Mathematische Annalen, vol. 159 (1965), pp. 77-80. · Zbl 0136.19804
[20] Hewitt, E., A problem of set-theoretic topology. Duke Mathematical Journal, vol. 10 (1943), pp. 309-333. · Zbl 0060.39407
[21] Illanes, A., Finite and \(\omega \) -resolvability. Proceedings of the American Mathematical Society, vol. 124 (1996), no. 4, pp. 1243-1246. · Zbl 0856.54010
[22] Johnstone, P. T., Stone Spaces, Cambridge University Press, Cambridge, 1982. · Zbl 0499.54001
[23] Lutzer, D. J., On Generalized Ordered Spaces, Dissertationes Mathematicae Rozprawy Matematyczny, vol. 89, Instytut Matematyczny Polskiej Akademi Nauk, Warsaw, 1971. · Zbl 0228.54026
[24] Mckinsey, J. C. C. and Tarski, A., The algebra of topology. Annals of Mathematics, vol. 45 (1944), pp. 141-191. · Zbl 0060.06206
[25] Özgün, A., Evidence in epistemic logic: A topological perspective, Ph.D. thesis, ILLC, University of Amsterdam and University of Lorraine, 2017.
[26] Rasiowa, H. and Sikorski, R., The Mathematics of Metamathematics, Monografie Matematyczne, Tom 41, Państwowe Wydawnictwo Naukowe, Warsaw, 1963. · Zbl 0122.24311
[27] Semadeni, Z., Banach Spaces of Continuous Functions, vol. I, PWN—Polish Scientific Publishers, Warsaw, 1971. · Zbl 0225.46030
[28] Telgársky, R., Total paracompactness and paracompact dispersed spaces. Bulletin of the Polish Academy of Sciences, Series of Mathematics, Astronomy and Physics, vol. 16 (1968), pp. 567-572. · Zbl 0164.53101
[29] Vickers, S., Topology Via Logic, Cambridge University Press, Cambridge, 1989. · Zbl 0668.54001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.