×

On adaptive confidence sets for the Wasserstein distances. (English) Zbl 07691575

Summary: In the density estimation model, we investigate the problem of constructing adaptive honest confidence sets with diameter measured in Wasserstein distance \({W_p}\), \(p\ge 1\), and for densities with unknown regularity measured on a Besov scale. As sampling domains, we focus on the \(d\)-dimensional torus \({\mathbb{T}^d} \), in which case \(1\le p\le 2\), and \({\mathbb{R}^d} \), for which \(p=1\). We identify necessary and sufficient conditions for the existence of adaptive confidence sets with diameters of the order of the regularity-dependent \({W_p} \)-minimax estimation rate. Interestingly, it appears that the possibility of such adaptation of the diameter depends on the dimension of the underlying space. In low dimensions, \(d\le 4\), adaptation to any regularity is possible. In higher dimensions, adaptation is possible if and only if the underlying regularities belong to some bounded interval, whose width can be chosen to be at least \(d/ (d-4)\). This contrasts with the \({L_p} \)-theory where, independently of the dimension, adaptation occurs only if regularities lie in a small fixed-width window. When possible, we explicitly construct confidence regions via the method of risk estimation. These are the first results in a statistical approach to adaptive uncertainty quantification with Wasserstein distances. Our analysis and methods extend to weak losses such as Sobolev norms with negative smoothness indices.

MSC:

62Gxx Nonparametric inference
60Fxx Limit theorems in probability theory
62Cxx Statistical decision theory

References:

[1] Armstrong, T.B. (2021). Adaptation bounds for confidence bands under self-similarity. Bernoulli 27 1348-1370. 10.3150/20-bej1277 · Zbl 1469.62249
[2] Bull, A.D. (2012). Honest adaptive confidence bands and self-similar functions. Electron. J. Stat. 6 1490-1516. 10.1214/12-EJS720 · Zbl 1295.62049
[3] Bull, A.D. and Nickl, R. (2013). Adaptive confidence sets in \[{L^2}\]. Probab. Theory Related Fields 156 889-919. 10.1007/s00440-012-0446-z · Zbl 1273.62105
[4] Cai, T.T. and Low, M.G. (2006). Adaptive confidence balls. Ann. Statist. 34 202-228. 10.1214/009053606000000146 · Zbl 1091.62037
[5] Carpentier, A. (2013). Honest and adaptive confidence sets in \[{L_p}\]. Electron. J. Stat. 7 2875-2923. 10.1214/13-EJS867 · Zbl 1280.62055
[6] Castillo, I. and Nickl, R. (2013). Nonparametric Bernstein-von Mises theorems in Gaussian white noise. Ann. Statist. 41 1999-2028. 10.1214/13-AOS1133 · Zbl 1285.62052
[7] Castillo, I. and Nickl, R. (2014). On the Bernstein-von Mises phenomenon for nonparametric Bayes procedures. Ann. Statist. 42 1941-1969. 10.1214/14-AOS1246 · Zbl 1305.62190
[8] Chernozhukov, V., Chetverikov, D. and Kato, K. (2014). Anti-concentration and honest, adaptive confidence bands. Ann. Statist. 42 1787-1818. 10.1214/14-AOS1235 · Zbl 1305.62161
[9] del Barrio, E., Giné, E. and Matrán, C. (1999). Central limit theorems for the Wasserstein distance between the empirical and the true distributions. Ann. Probab. 27 1009-1071. 10.1214/aop/1022677394 · Zbl 0958.60012
[10] Deo, N. and Randrianarisoa, T. (2023). Supplement to “On Adaptive Confidence Sets for the Wasserstein Distances.” 10.3150/22-BEJ1535SUPP
[11] Donoho, D.L., Johnstone, I.M., Kerkyacharian, G. and Picard, D. (1996). Density estimation by wavelet thresholding. Ann. Statist. 24 508-539. 10.1214/aos/1032894451 · Zbl 0860.62032
[12] Dudley, R.M. (1968). The speed of mean Glivenko-Cantelli convergence. Ann. Math. Stat. 40 40-50. 10.1214/aoms/1177697802 · Zbl 0184.41401
[13] Fournier, N. and Guillin, A. (2015). On the rate of convergence in Wasserstein distance of the empirical measure. Probab. Theory Related Fields 162 707-738. 10.1007/s00440-014-0583-7 · Zbl 1325.60042
[14] Giné, E. and Nickl, R. (2010). Confidence bands in density estimation. Ann. Statist. 38 1122-1170. 10.1214/09-AOS738 · Zbl 1183.62062
[15] Giné, E. and Nickl, R. (2016). Mathematical Foundations of Infinite-Dimensional Statistical Models. Cambridge Series in Statistical and Probabilistic Mathematics, [40]. New York: Cambridge Univ. Press. 10.1017/CBO9781107337862 · Zbl 1358.62014
[16] Hoffmann, M. and Nickl, R. (2011). On adaptive inference and confidence bands. Ann. Statist. 39 2383-2409. 10.1214/11-AOS903 · Zbl 1232.62072
[17] Juditsky, A. and Lambert-Lacroix, S. (2003). Nonparametric confidence set estimation. Math. Methods Statist. 12 410-428. · Zbl 1076.62037
[18] Kantorovič, L.V. and Rubinšteĭn, G.Š. (1958). On a space of completely additive functions. Vestn. Leningr. Univ. 13 52-59. · Zbl 0082.11001
[19] Kantorovitch, L. (1942). On the translocation of masses. C. R. (Dokl.) Acad. Sci. URSS 37 199-201. · Zbl 0061.09705
[20] Lepskiĭ, O.V. (1990). A problem of adaptive estimation in Gaussian white noise. Teor. Veroyatn. Primen. 35 459-470. 10.1137/1135065 · Zbl 0725.62075
[21] Low, M.G. (1997). On nonparametric confidence intervals. Ann. Statist. 25 2547-2554. 10.1214/aos/1030741084 · Zbl 0894.62055
[22] McDonald, S. and Campbell, D. (2021). A review of uncertainty quantification for density estimation. Stat. Surv. 15 1-71. 10.1214/21-ss130 · Zbl 1497.62086
[23] Monge, G. (1781). Mémoire sur la Théorie des Déblais et des Remblais. De l’Imprimerie Royale.
[24] Nickl, R. and Szabó, B. (2016). A sharp adaptive confidence ball for self-similar functions. Stochastic Process. Appl. 126 3913-3934. 10.1016/j.spa.2016.04.017 · Zbl 1348.62165
[25] Panaretos, V.M. and Zemel, Y. (2019). Statistical aspects of Wasserstein distances. Annu. Rev. Stat. Appl. 6 405-431. 10.1146/annurev-statistics-030718-104938
[26] Peyré, G. and Cuturi, M. (2019). Computational optimal transport. Found. Trends Mach. Learn. 11 355-607.
[27] Picard, D. and Tribouley, K. (2000). Adaptive confidence interval for pointwise curve estimation. Ann. Statist. 28 298-335. 10.1214/aos/1016120374 · Zbl 1106.62331
[28] Ray, K. (2017). Adaptive Bernstein-von Mises theorems in Gaussian white noise. Ann. Statist. 45 2511-2536. 10.1214/16-AOS1533 · Zbl 1384.62158
[29] Robins, J. and van der Vaart, A. (2006). Adaptive nonparametric confidence sets. Ann. Statist. 34 229-253. 10.1214/009053605000000877 · Zbl 1091.62039
[30] Rousseau, J. and Szabo, B. (2020). Asymptotic frequentist coverage properties of Bayesian credible sets for sieve priors. Ann. Statist. 48 2155-2179. 10.1214/19-AOS1881 · Zbl 1471.62350
[31] Szabó, B., van der Vaart, A.W. and van Zanten, J.H. (2015). Frequentist coverage of adaptive nonparametric Bayesian credible sets. Ann. Statist. 43 1391-1428. 10.1214/14-AOS1270 · Zbl 1317.62040
[32] Villani, C. (2009). Optimal Transport: Old and New. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 338. Berlin: Springer. 10.1007/978-3-540-71050-9 · Zbl 1156.53003
[33] Weed, J. and Bach, F. (2019). Sharp asymptotic and finite-sample rates of convergence of empirical measures in Wasserstein distance. Bernoulli 25 2620-2648. 10.3150/18-BEJ1065 · Zbl 1428.62099
[34] Weed, J. and Berthet, Q. (2019). Estimation of smooth densities in Wasserstein distance. In Proceedings of the Thirty-Second Conference on Learning Theory (A. Beygelzimer and D. Hsu, eds.). Proceedings of Machine Learning Research 99 3118-3119. PMLR
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.