×

Koopman wavefunctions and classical-quantum correlation dynamics. (English) Zbl 1472.81012

Summary: Upon revisiting the Hamiltonian structure of classical wavefunctions in Koopman-von Neumann theory, this paper addresses the long-standing problem of formulating a dynamical theory of classical-quantum coupling. The proposed model not only describes the influence of a classical system onto a quantum one, but also the reverse effect – the quantum backreaction. These interactions are described by a new Hamiltonian wave equation overcoming shortcomings of currently employed models. For example, the density matrix of the quantum subsystem is always positive definite. While the Liouville density of the classical subsystem is generally allowed to be unsigned, its sign is shown to be preserved in time for a specific infinite family of hybrid classical-quantum systems. The proposed description is illustrated and compared with previous theories using the exactly solvable model of a degenerate two-level quantum system coupled to a classical harmonic oscillator.

MSC:

81P15 Quantum measurement theory, state operations, state preparations
81S22 Open systems, reduced dynamics, master equations, decoherence

References:

[1] Bohr N. 1935 Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 48, 696-702. (10.1103/PhysRev.48.696) · Zbl 0012.42701
[2] Zurek WH. 2003 Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 75, 705-775. (10.1103/RevModPhys.75.715) · Zbl 1205.81031
[3] von Neumann J. 1955 Mathematical foundations of quantum mechanics. Princeton, NJ: Princeton University Press. · Zbl 0064.21503
[4] Hacohen-Gourgy S, Martin LS, Flurin E, Ramasesh VV, Whaley KB, Siddiqi I. 2016 Quantum dynamics of simultaneously measured non-commuting observables. Nature 538, 491-494. (10.1038/nature19762)
[5] Gorini V, Kossakowski A, Sudarshan ECG. 1976 Completely positive semigroups of N-level systems. J. Math. Phys. 17, 821. (10.1063/1.522979) · Zbl 1446.47009
[6] Lindblad G. 1976 On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48, 119-130. (10.1007/BF01608499) · Zbl 0343.47031
[7] Aleksandrov IV. 1981 The statistical dynamics of a system consisting of a classical and a quantum subsystem. Z. Naturforsch. 36a, 902-908.
[8] Gerasimenko V. 1982 Dynamical equations of quantum-classical systems. Theor. Math. Phys. 50, 49-55. (10.1007/BF01027604)
[9] Kapral R. 2006 Progress in the theory of mixed quantum-classical dynamics. Annu. Rev. Phys. Chem. 57, 129-157. (10.1146/annurev.physchem.57.032905.104702)
[10] Boucher W, Traschen J. 1988 Semiclassical physics and quantum fluctuations. Phys. Rev. D 37, 3522-3532. (10.1103/PhysRevD.37.3522)
[11] Caro J, Salcedo LL. 1999 Impediments to mixing classical and quantum dynamics. Phys. Rev. A 60, 842-852. (10.1103/PhysRevA.60.842)
[12] Prezhdo OV. 2006 A quantum-classical bracket that satisfies the Jacobi identity. J. Chem. Phys. 124, 201104. (10.1063/1.2200342)
[13] Salcedo LL. 1996 Absence of classical and quantum mixing. Phys. Rev. A 54, 3657-3660. (10.1103/PhysRevA.54.3657)
[14] Sergi A, Hanna G, Grimaudo R, Messina A. 2018 Quasi-Lie brackets and the breaking of time-translation symmetry for quantum systems embedded in classical baths. Symmetry 10, 518. (10.3390/sym10100518)
[15] Anderson A. 1995 Quantum backreaction on ‘classical’ variables. Phys. Rev. Lett. 74, 621-625. (10.1103/PhysRevLett.74.621) · Zbl 1020.81605
[16] Chruściński D, Kossakowski A, Marmo G, Sudarshan ECG. 2011 Dynamics of interacting classical and quantum systems. Open Syst. Inf. Dyn. 18, 339-351. (10.1142/S1230161211000236) · Zbl 1243.82043
[17] Diósi L, Halliwell JJ. 1998 Coupling classical and quantum variables using continuous quantum measurement theory. Phys. Rev. Lett. 81, 2846. (10.1103/PhysRevLett.81.2846) · Zbl 0947.81012
[18] Elze HT. 2012 Four questions for quantum-classical hybrid theory. J. Phys.: Conf. Ser. 361, 012004. (10.1088/1742-6596/361/1/012004)
[19] Hall MJW, Reginatto M. 2005 Interacting classical and quantum ensembles. Phys. Rev. A 72, 062109. (10.1103/PhysRevA.72.062109)
[20] Prezhdo OV, Kisil VV. 1997 Mixing quantum and classical mechanics. Phys. Rev. A 56, 162-175. (10.1103/PhysRevA.56.162)
[21] Radonjić M, Prvanović S, Burić N. 2012 Hybrid quantum-classical models as constrained quantum systems. Phys. Rev. A 85, 064101. (10.1103/PhysRevA.85.064101) · Zbl 1331.37131
[22] Sahoo D. 2004 Mixing quantum and classical mechanics and uniqueness of Planck’s constant. J. Phys. A: Math. Gen. 37, 997-1010. (10.1088/0305-4470/37/3/031) · Zbl 1082.81010
[23] Shirokov Yu M. 1979 Quantum and classical mechanics in the phase space representation. Sov. J. Part. Nucl. 10, 1-18.
[24] Sudarshan ECG. 1976 Interaction between classical and quantum systems and the measurement of quantum observables. Prāma dna 6, 117-126.
[25] Koopman BO. 1931 Hamiltonian systems and transformations in Hilbert space. Proc. Natl Acad. Sci. USA 17, 315-318. (10.1073/pnas.17.5.315) · JFM 57.1010.02
[26] von Neumann J. 1932 Zur Operatorenmethode In Der Klassischen Mechanik. Ann. Math. 33, 587-642. (10.2307/1968537) · Zbl 0005.12203
[27] Della Riccia G, Wiener N. 1966 Wave mechanics in classical phase space, Brownian motion, and quantum theory. J. Math. Phys. 6, 1372-1383. (10.1063/1.1705047)
[28] ’t Hooft G. 1997 Quantummechanical behaviour in a deterministic model. Found. Phys. Lett. 10, 105-111. (10.1007/BF02764232)
[29] Bondar D, Cabrera R, Lompay RR, Ivanov MYu, Rabitz H. 2012 Operational dynamic modeling transcending quantum and classical mechanics. Phys. Rev. Lett. 109, 190403. (10.1103/PhysRevLett.109.190403)
[30] Ghose P. 2015 The unfinished search for wave-particle and classical-quantum harmony. J. Adv. Phys. 4, 236-251. (10.1166/jap.2015.1197)
[31] Klein U. 2018 From Koopman-von Neumann theory to quantum theory. Quantum Stud.: Math. Found. 5, 219-227. (10.1007/s40509-017-0113-2) · Zbl 1400.81095
[32] Mauro D. 2002 On Koopman-von Neumann waves. Int. J. Mod. Phys. A 17, 1301-1325. (10.1142/S0217751X02009680) · Zbl 1012.81003
[33] Ramos-Prieto I, Urzúa-Pineda AR, Soto-Eguibar F, Moya-Cessa HM. 2018 KvN mechanics approach to the time-dependent frequency harmonic oscillator. Sci. Rep. 8, 8401. (10.1038/s41598-018-26759-w)
[34] Viennot D, Aubourg L. 2018 Schrödinger-Koopman quasienergy states of quantum systems driven by classical flow. J. Phys. A: Math. Theor. 51, 335201. (10.1088/1751-8121/aaca45) · Zbl 1405.81041
[35] Budišić N, Mohr R, Mezić I. 2012 Applied Koopmanism. Chaos 22, 047510. (10.1063/1.4772195) · Zbl 1319.37013
[36] Barceló C, Carballo-Rubio R, Garay LJ, Gómez-Escalante R. 2012 Hybrid classical-quantum formulations ask for hybrid notions. Phys. Rev. A 86, 042120. (10.1103/PhysRevA.86.042120)
[37] Peres A, Terno DR. 2001 Hybrid classical-quantum dynamics. Phys. Rev. A 63, 022101. (10.1103/PhysRevA.63.022101)
[38] Sudarshan ECG. 2004 Consistent measurement of a quantum dynamical variable using classical apparatus. (http://arxiv.org/abs/quant-ph/0402134)
[39] Terno DR. 2006 Inconsistency of quantum-classical dynamics, and what it implies. Found. Phys. 36, 102-111. (10.1007/s10701-005-9007-y) · Zbl 1105.81004
[40] Bialynicki-Birula I, Morrison PJ. 1991 Quantum mechanics as a generalization of Nambu dynamics to the Weyl-Wigner formalism. Phys. Lett. A 158, 453-457. (10.1016/0375-9601(91)90458-K)
[41] Clebsch A. 1859 Über die Integration der hydrodynamischen Gleichungen. J. Reine Angew. Math. 56, 1-10. (10.1515/crll.1859.56.1) · ERAM 056.1468cj
[42] Holm DD, Kupershmidt BA. 1983 Poisson brackets and Clebsch representations for magnetohydrodynamics, multifluid plasmas, and elasticity. Phys. D 6, 347-363. (10.1016/0167-2789(83)90017-9) · Zbl 1194.76285
[43] Marsden JE, Weinstein A. 1983 Coadjoint orbits, vortices, and Clebsch variables for incompressible fluids. Phys. D 7, 305-323. (10.1016/0167-2789(83)90134-3) · Zbl 0576.58008
[44] Morrison PJ. 1998 Hamiltonian description of the ideal fluid. Rev. Mod. Phys. 70, 467-521. (10.1103/RevModPhys.70.467) · Zbl 1205.37093
[45] Holm DD, Schmah T, Stoica C. 2009 Geometric mechanics and symmetry: from finite to infinite dimensions. Oxford, UK: Oxford University Press. · Zbl 1175.70001
[46] Marsden JE, Ratiu TS. 1998 Introduction to mechanics and symmetry. Berlin, Germany: Springer.
[47] Gay-Balmaz F, Tronci C. 2012 Vlasov moment flows and geodesics on the Jacobi group. J. Math. Phys. 53, 123502. (10.1063/1.4763467) · Zbl 1287.37045
[48] Souriau J-M. 1966 Quantification géométrique. Commun. Math. Phys. 1, 374-398. · Zbl 1148.81307
[49] van Hove L. 2001 On certain unitary representations of an infinite group of transformations. PhD thesis (1951), Word Scientific, Singapore. · Zbl 0989.81051
[50] Kostant B. 1972 Line bundles and the prequantized Schrödinger equation. In Colloquium on group theoretical methods in physics. Centre de Physique Théorique, Marseille, IV.1-IV.22.
[51] Günther P. 1980 Presymplectic manifolds and the quantization of relativistic particle systems. In Differential geometrical methods in mathematical physics (Proc. Conf., Aix-en- Provence/Salamanca, 1979). Lecture Notes in Mathematics, vol. 836, pp. 383-400. Berlin, Germany: Springer. · Zbl 0451.58018
[52] Jauslin HR, Sugny D. 2010 Dynamics of mixed classical-quantum systems, geometric quantization and coherent states. In Mathematical horizons for quantum physics (eds H Araki, B-G Englert, L-C Kwek, J Suzuki). Lecture Notes Series, Institute for Mathematical Sciences, National University of Singapore, no. 20, pp. 65-96. Singapore: World Scientific. · Zbl 1197.81031
[53] Brown LM (ed.). 2005 Feynman’s thesis—a new approach to quantum theory. Singapore: World Scientific. · Zbl 1122.81007
[54] Schleich WP, Greenberger DM, Kobe DH, Scully MO. 2013 Schrödinger equation revisited. Proc. Natl Acad. Sci. USA 110, 5374-5379. (10.1073/pnas.1302475110) · Zbl 1292.35257
[55] Schleich WP, Greenberger DM, Kobe DH, Scully MO. 2015 A wave equation interpolating between classical and quantum mechanics. Phys. Scr. 90, 108009. (10.1088/0031-8949/90/10/108009)
[56] Hall BC. 2013 Quantum theory for mathematicians. Berlin, Germany: Springer. · Zbl 1273.81001
[57] Kirillov AA. 2001 Geometric quantization. In Dynamical systems IV (eds VI Arnold, SP Novikov). Encylopaedia of Mathematical Sciences, no. 4, pp. 139-176. Berlin, Germany: Springer.
[58] de Gosson MA. 2005 Symplectically covariant Schrödinger equation in phase space. J. Phys. A: Math. Gen. 38, 9263-9287. (10.1088/0305-4470/38/42/007) · Zbl 1081.81072
[59] Tronci C. 2019 Momentum maps for mixed states in quantum and classical mechanics. J. Geom. Mech. (https://arxiv.org/abs/1810.01332) · Zbl 1448.81070
[60] Guillemin V, Sternberg S. 1980 The moment map and collective motion. Ann. Phys. 27, 220-253. (10.1016/0003-4916(80)90155-4) · Zbl 0453.58015
[61] Guillemin V, Sternberg S. 1984 Symplectic techniques in physics. Cambridge, UK: Cambridge University Press. · Zbl 0576.58012
[62] Kostant B. 1970 Quantization and unitary representations. In Lectures in modern analysis and applications III (ed. CT Taam). Lecture Notes in Mathematics, no. 170, pp. 87-208. Berlin, Germany: Springer. · Zbl 0223.53028
[63] Bonet-Luz E, Tronci C. 2015 Geometry and symmetry of quantum and classical-quantum variational principles. J. Math. Phys. 56, 082104. (10.1063/1.4929567) · Zbl 1331.81088
[64] Bonet-Luz E, Tronci C. 2016 Hamiltonian approach to Ehrenfest expectation values and Gaussian quantum states. Proc. R. Soc. A 472, 20150777. (10.1098/rspa.2015.0777) · Zbl 1371.81034
[65] Chernoff PR, Marsden JE. 1976 Some remarks on Hamiltonian systems and quantum mechanics. In Foundations of probability theory, statistical inference, and statistical theories of science, vol. III (eds WL Harper, C Hooker), pp. 35-53. Dordrecht, The Netherlands: Reidel Publishing Company. · Zbl 0336.70001
[66] Feynman R. 1987 Negative probability. In Quantum implications: essays in honour of David Bohm (eds B Hiley, FD Peat), pp. 235-248. London, UK: Routledge & Kegan Paul Ltd.
[67] Khrennikov A. 1997 Non-Archimedean analysis: quantum paradoxes, dynamical systems and biological models. Dordrecht, The Netherlands: Kluwer Academic Publishers. · Zbl 0920.11087
[68] Lindblad G. 1975 Completely positive maps and entropy inequalities. Commun. Math. Phys. 40, 147-151. (10.1007/BF01609396) · Zbl 0298.46062
[69] Gay-Balmaz F, Tronci C. 2019 Madelung transform and probability currents in hybrid classical-quantum dynamics. (https://arxiv.org/abs/1907.06624) · Zbl 1454.35310
[70] Nielsen S, Kapral R, Ciccotti G. 2001 Statistical mechanics of quantum-classical systems. J. Chem. Phys. 115, 5805-5815. (10.1063/1.1400129)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.