×

Bell’s inequalities, superquantum correlations, and string theory. (English) Zbl 1234.81031

Summary: We offer an interpretation of superquantum correlations in terms of a “doubly” quantum theory. We argue that string theory, viewed as a quantum theory with two deformation parameters, the string tension \(\alpha^{\prime}\) , and the string coupling constant \({\mathfrak g}_{S'}\), is such a superquantum theory that transgresses the usual quantum violations of Bell’s inequalities. We also discuss the \(\hbar\rightarrow \infty \) limit of quantum mechanics in this context. As a superquantum theory, string theory should display distinct experimentally observable supercorrelations of entangled stringy states.

MSC:

81P40 Quantum coherence, entanglement, quantum correlations
81P15 Quantum measurement theory, state operations, state preparations
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory

References:

[1] J. S. Bell, “On the Einstein Podolsky Rosen paradox,” Physics, vol. 1, no. 3, pp. 195-200, 1964.
[2] J. S. Bell, Speakable and Unspeakable in Quantum Mechanics, Cambridge University Press, 1987. · Zbl 1239.81001
[3] J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, “Proposed experiment to test local hidden-variable theories,” Physical Review Letters, vol. 23, no. 15, pp. 880-884, 1969. · Zbl 1371.81014 · doi:10.1103/PhysRevLett.23.880
[4] J. Polchinski, String Theory, vol. 2, Cambridge University Press, 1998. · Zbl 1006.81521
[5] K. Becker, M. Becker, and J. H. Schwarz, String Theory and M-Theory: A Modern Introduction, Cambridge University Press, 2007. · Zbl 1123.81001
[6] M. B. Green, J. H. Schwarz, and E. Witten, Superstring Theory, vol. 1, Cambridge University Press, 1988, where it was suggested that string field theory can be viewed as a generalization of quantum theory.
[7] S. J. Freedman and J. F. Clauser, “Experimental test of local hidden-variable theories,” Physical Review Letters, vol. 28, no. 14, pp. 938-941, 1972. · doi:10.1103/PhysRevLett.28.938
[8] J. F. Clauser and M. A. Horne, “Experimental consequences of objective local theories,” Physical Review D, vol. 10, no. 2, pp. 526-535, 1974. · doi:10.1103/PhysRevD.10.526
[9] A. Aspect, P. Grangier, G. Roger, et al., “Experimental tests of realistic local theories via Bell’s theorem,” Physical Review Letters, vol. 47, no. 7, pp. 460-463, 1981. · doi:10.1103/PhysRevLett.47.460
[10] A. Aspect, P. Grangier, G. Roger, et al., “Experimental realization of Einstein-Podolsky-Rosen-Bohm gedankenexperiment: a new violation of Bell’s inequalities,” Physical Review Letters, vol. 49, no. 2, pp. 91-94, 1982. · doi:10.1103/PhysRevLett.49.91
[11] A. Aspect, J. Dalibard, G. Roger, et al., “Experimental test of Bell’s inequalities using time- varying analyzers,” Physical Review Letters, vol. 49, no. 25, pp. 1804-1807, 1982. · doi:10.1103/PhysRevLett.49.1804
[12] B. S. Cirel’son, “Quantum generalizations of Bell’s inequality,” Letters in Mathematical Physics, vol. 4, no. 2, pp. 93-100, 1980. · doi:10.1007/BF00417500
[13] L. J. Landau, “On the violation of Bell’s inequality in quantum theory,” Physics Letters A, vol. 120, no. 2, pp. 54-56, 1987. · doi:10.1016/0375-9601(87)90075-2
[14] S. Popescu and D. Rohrlich, “Quantum nonlocality as an axiom,” Foundations of Physics, vol. 24, no. 3, pp. 379-385, 1994. · doi:10.1007/BF02058098
[15] S. J. Summers and R. Werner, “Maximal violation of Bell’s inequalities is generic in quantum field theory,” Communications in Mathematical Physics, vol. 110, no. 2, pp. 247-259, 1987. · Zbl 0626.46056 · doi:10.1007/BF01207366
[16] S. J. Summers and R. Werner, “Bell’s inequalities and quantum field theory. I. General setting,” Journal of Mathematical Physics, vol. 28, no. 10, pp. 2440-2448, 1987. · Zbl 0648.46066 · doi:10.1063/1.527733
[17] D. Dieks, “Inequalities that test locality in quantum mechanics,” http://arxiv.org/abs/quant-ph/0206172. · Zbl 1046.81505
[18] Y. Aharonov and D. Rohrlich, Quantum Paradoxes: Quantum Theory for the Perplexed, Wiley-VCH, 2005. · Zbl 1081.81001
[19] D. Rohrlich, “Three attempts at two axioms for quantum mechanics,” http://arxiv.org/abs/1011.5322.
[20] W. van Dam, Nonlocality and communication complexity, D.Phil. thesis, Department of Physics, University of Oxford, 2000.
[21] W. Van Dam, “Implausible consequences of superstrong nonlocality,” http://arxiv.org/abs/quant-ph/0501159. · Zbl 1336.81021
[22] G. Brassard, H. Buhrman, N. Linden, A. A. Méthot, A. Tapp, and F. Unger, “Limit on nonlocality in any world in which communication complexity is not trivial,” Physical Review Letters, vol. 96, no. 25, Article ID 250401, 2006. · Zbl 1228.81055 · doi:10.1103/PhysRevLett.96.250401
[23] G. Brassard, “Is information the key?” Nature Physics, vol. 1, pp. 2-4, 2005. · doi:10.1038/nphys134
[24] S. Popescu, “Quantum mechanics: why isn’t nature more non-local?” Nature Physics, vol. 2, no. 8, pp. 507-508, 2006. · doi:10.1038/nphys374
[25] J. Barrett, “Information processing in generalized probabilistic theories,” Physical Review A, vol. 75, Article ID 032304, 2007.
[26] N. Brunner and P. Skrzypczyk, “Nonlocality distillation and postquantum theories with trivial communication complexity,” Physical Review Letters, vol. 102, no. 16, Article ID 160403, 4 pages, 2009. · doi:10.1103/PhysRevLett.102.160403
[27] G. Ver Steeg and S. Wehner, http://arxiv.org/PS_cache/arxiv/pdf/0811/0811.3771v2.pdf.
[28] L. D. Faddeev, “On the Relationship between Mathematics and Physics,” Asia-Pacific Physics News, vol. 3, pp. 21-22, June-July, 1988.
[29] L. D. Faddeev, “Frontiers in physics, high technology and mathematics,” in Proceedings of the 25th Anniversary Conference, H. A. Cerdeira and S. Lundqvist , Eds., pp. 238-246, World Scientific, Trieste, Italy, 1989.
[30] B. S. Dewitt, “Quantum theory of gravity. I. the canonical theory,” Physical Review, vol. 160, no. 5, pp. 1113-1148, 1967. · Zbl 0158.46504 · doi:10.1103/PhysRev.160.1113
[31] W. S. Bickel, “Mean lives of some excited states in multiply ionized oxygen and neon,” Physical Review, vol. 162, no. 1, pp. 7-11, 1967. · doi:10.1103/PhysRev.162.7
[32] E. Witten, “Non-commutative geometry and string field theory,” Nuclear Physics B, vol. 268, no. 2, pp. 253-294, 1986. · doi:10.1016/0550-3213(86)90155-0
[33] R. Dijkgraaf, “The mathematics of M-theory,” in Proceedings of the 3rd European Congress of Mathematics, Progress in Mathematics, Birkhuser, Barcelona, Spain, 2000. · Zbl 0952.81045
[34] D. Minic and H. C. Tze, “Background independent quantum mechanics and gravity,” Physical Review D, vol. 68, no. 6, Article ID 061501, 5 pages, 2003. · doi:10.1103/PhysRevD.68.061501
[35] D. Minic and C. H. Tze, “A general theory of quantum relativity,” Physics Letters B, vol. 581, no. 1-2, pp. 111-118, 2004. · Zbl 1246.83079 · doi:10.1016/j.physletb.2003.11.054
[36] V. Jejjala, M. Kavic, and D. Minic, “Time and M-theory,” International Journal of Modern Physics A, vol. 22, no. 20, pp. 3317-3405, 2007. · Zbl 1200.83118 · doi:10.1142/S0217751X07036981
[37] V. Jejjala, M. Kavic, D. Minic, and C. H. Tze, http://arxiv.org/PS_cache/arxiv/pdf/0804/0804.3598v1.pdf.
[38] V. Jejjala, M. Kavic, D. Minic, and C. H. Tze, “On the origin of time and the universe,” International Journal of Modern Physics D, vol. 25, no. 12, pp. 2515-2523, 2010. · doi:10.1142/S0217751X10049013
[39] L. M. Brown, Ed., Feynman’s Thesis: A New Approach to Quantum Theory, World Scientific, 2005. · Zbl 1122.81007
[40] M. A. Vasiliev, http://arxiv.org/PS_cache/hep-th/pdf/9910/9910096v1.pdf.
[41] X. Bekaert, S. Cnockaert, C. Iazeolla, and M. A. Vasiliev, http://arxiv.org/PS_cache/hep-th/pdf/0503/0503128v2.pdf.
[42] M. R. Douglas, L. Mazzucato, and S. S. Razamat, http://arxiv.org/PS_cache/arxiv/pdf/1011/1011.4926v2.pdf.
[43] E. Komatsu, K. M. Smith, J. Dunkley, et al., “Seven-year wilkinson microwave anisotropy probe (Wmap) observations: cosmological interpretation,” Astrophysical Journal Supplement Series, vol. 192, no. 2, article 18, 2011.
[44] G. Efstathiou, C. Lawrence, and J. Tauber, Eds., Planck Collaboration, astro-ph/0604069.
[45] P. A. R. Ade, N. Aghanim, M. Arnaud, et al., Planck Collaboration, http://arxiv.org/PS_cache/arxiv/pdf/1101/1101.2022v2.pdf.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.