×

Lagrangians for dissipative nonlinear oscillators: the method of Jacobi last multiplier. (English) Zbl 1206.34013

Authors’ abstract: We present a method devised by Jacobi to derive Lagrangians of any second-order differential equation: it consists in finding a Jacobi Last Multiplier. We illustrate the easiness and the power of Jacobi’s method by applying it to several equations, including a class of equations recently studied by Z. E. Musielak with his own method [J. Phys. A, Math. Theor. 41, No. 5, 055205 (2008; Zbl 1136.37044)], and in particular a Liènard type nonlinear oscillator and a second-order Riccati equation. Also, we derive more than one Lagrangian for each equation.

MSC:

34A26 Geometric methods in ordinary differential equations
34C14 Symmetries, invariants of ordinary differential equations
34C15 Nonlinear oscillations and coupled oscillators for ordinary differential equations
34C20 Transformation and reduction of ordinary differential equations and systems, normal forms

Citations:

Zbl 1136.37044

References:

[1] Ames, W. F., Nonlinear Ordinary Differential Equations in Transport Processes, 1968, New York: Academic Press, New York · Zbl 0193.04102
[2] Bianchi, L., Lezioni sulla Teoria dei Gruppi Continui Finiti di Trasformazioni (Enrico Spoerri, 1918 · JFM 46.0657.10
[3] Bluman, G.; Cheviakov, A. F.; Senthilvelan, M., Solution and asymptotic/blow-up behaviour of a class of nonlinear dissipative systems, J. Math. Anal. Appl, 339, 1199-1209, 2008 · Zbl 1131.34030
[4] Carinena, J. F.; Rañada, M. F.; Santander, M., A quantum exactly solvable non-linear oscillator with quasi-harmonic behaviour, Ann. Phys, 322, 434-459, 2007 · Zbl 1119.81098
[5] J. F. Carinena, M. F. Rañada and M. Santander, Lagrangian formalism for nonlinear second-order Riccati systems: One-dimensional integrability and two-dimensional superintegrability J. Math. Phys. 46 (2005) 062703. · Zbl 1110.37051
[6] Dirac, P. A M., The Lagrangian in quantum mechanics, Physikalische Zeitschrift der Sowjetunion, 3, 1, 64-72, 1933 · JFM 59.1527.03
[7] L. Euler, (E366) Institutionum calculi integrals, Volumen Secundum (Petropoli impensis academiae imperialis scientiarum, Petersburg, 1769), available at www.eulerarchive.org.
[8] Euler, M.; Euler, N.; Leach, P. G L., The Riccati and Ermakov-Pinney hierarchies, J. Nonlinear Math. Phys, 14, 290-310, 2007 · Zbl 1160.37394
[9] Euler, N.; Euler, M., Sundman symmetries of nonlinear second-order and third-order ordinary differential equations, J. Nonlinear Math. Phys, 11, 399-421, 2004 · Zbl 1075.34033
[10] R. P. Feynman, The development of the space-time view of quantum electrodynamics, URL: nobelprize.org/nobel_prizes/physics/laureates/1965/feynman-lecture.html
[11] Feynman, R. P.; Brown, L. M.; Dirac, P. A M., Feynman’s Thesis: A New Approach to Quantum Theory, 2005, Singapore: World Scientific, Singapore · Zbl 1122.81007
[12] Havas, P., The range of application of the Lagrange formalism - I, Nuovo Cimento Suppl, Ser, X, 5, 363-388, 1957 · Zbl 0077.37202
[13] Jacobi, C. G J., Sur un noveau principe de la mécanique analytique, Comptes Rendus du Academie des Sciences de Paris, 15, 202-205, 1842
[14] Jacobi, C. G J., Giornale Arcadico di Scienze, Lettere ed Arti, 99, 129-146, 1844
[15] C. G. J. Jacobi, Theoria novi multiplicatoris systemati æquationum differentialum vulgarium applicandi: Pars I, J. Reine Angew. Math. 27 (1844) 199-268. · ERAM 027.0793cj
[16] C. G. J. Jacobi, Theoria novi multiplicatoris systemati æquationum differentialum vulgarium applicandi: Pars II, J. Reine Angew. Math. 29 (1845) 213-279 and 333-376. · ERAM 029.0845cj
[17] Jacobi, C. G J., Nebst fünf hinterlassenen Abhandlungen desselben herausgegeben von A Clebsch, 1886, Berlin: Druck und Verlag von Georg Reimer, Berlin
[18] S. Lie, Veralgemeinerung und neue Verwerthung der Jacobischen Multiplicator-Theorie, Ford-handlinger i Videnokabs-Selshabet i Christiania (1874) 255-274.
[19] Lie, S., Vorlesungen über Differentialgleichungen mit bekannten infinitesimalen Transformationen, 1912, Leipzig: Teubner, Leipzig · JFM 43.0373.01
[20] Mathews, P. M.; Lakshmanan, M., On a unique non-linear oscillator, Q. Appl, Math, 32, 215-218, 1974 · Zbl 0284.34046
[21] Z. E. Musielak, Standard and non-standard Lagrangians for dissipative dynamical systems with variable coefficients, J. Phys. A: Math. Theor. 41 (2008) 055205. · Zbl 1136.37044
[22] Musielak, Z. E.; Roy, D.; Swift, L. D., Method to derive Lagrangian and Hamiltonian for a nonlinear dynamical system with variable coefficients, Chaos, Solitons & Fractals, 38, 894-902, 2008 · Zbl 1146.70336
[23] Noether, E., Invariante Variationsprobleme, Nachr. d. König Gesellsch. d. Wiss, 235-257, 1918, Klasse: zu Göttingen Math-phys, Klasse · JFM 46.0770.01
[24] Nucci, M. C.; Interactive, REDUCE, programs for calculating Lie point, non-classical, Lie-Bäcklund, and approximate symmetries of differential equations: manual and floppy disk, 415-481, 1996, Boca Raton: New Trends in Theoretical Developments and Computational Methods, ed. N. H. Ibragimov (CRC Press, Boca Raton
[25] Nucci, M. C., Jacobi last multiplier and Lie symmetries: a novel application of an old relationship, J. Nonlinear Math. Phys, 12, 284-304, 2005 · Zbl 1080.34003
[26] Nucci, M. C., Let’s Lie: a miraculous haul of fishes, Theor, Math. Phys, 144, 1214-1222, 2005 · Zbl 1178.34039
[27] Nucci, M. C., Lie symmetries, and hidden linearity: “Goldfishes” galore, Theor, Math. Phys, 151, 851-862, 2007 · Zbl 1137.70010
[28] Nucci, M. C., Lie symmetries of a Painlevé-type equation without Lie symmetries, J. Nonlinear Math. Phys, 15, 205-211, 2008 · Zbl 1169.34319
[29] M. C. Nucci and P. G. L. Leach, Jacobi’s last multiplier and the complete symmetry group of the Euler-Poinsot system, J. Nonlinear Math. Phys. 9 S-2 (2002) 110-121. · Zbl 1362.35027
[30] Nucci, M. C.; Leach, P. G L., Jacobi’s last multiplier and symmetries for the Kepler problem plus a lineal story, J. Phys. A: Math. Gen, 37, 7743-7753, 2004 · Zbl 1065.70007
[31] M. C. Nucci and P. G. L. Leach, Jacobi’s last multiplier and the complete symmetry group of the Ermakov-Pinney equation, J. Nonlinear Math. Phys. 12 (2005) 305-320. · Zbl 1079.34026
[32] M. C. Nucci and P. G. L. Leach, Fuch’s solution of Painlevé VI equation by means of Jacobi last multiplier, J. Math. Phys. 48 (2007) 013514. · Zbl 1121.33021
[33] M. C. Nucci and P. G. L. Leach, Lagrangians galore, J. Math. Phys. 48 (2007) 123510. · Zbl 1153.81413
[34] Nucci, M. C.; Leach, P. G L., Gauge variant symmetries for the Schrödinger equation, Il Nuovo Cimento B, 123, 93-101, 2008
[35] M. C. Nucci and P. G. L. Leach, Jacobi last multiplier and Lagrangians for multidimensional linear systems, J. Math. Phys. 49 (2008) 073517. · Zbl 1152.81573
[36] M. C. Nucci and P. G. L. Leach, The Jacobi last multiplier and applications in Mechanics, Phys. Scr. 78 (2008) 065011. · Zbl 1158.70008
[37] Nucci, M. C.; Leach, P. G L., An old method of Jacobi to find Lagrangians, J. Nonlinear Math. Phys, 16, 431-441, 2009 · Zbl 1205.34011
[38] M. C. Nucci and K. M. Tamizhmani, Using an old method of Jacobi to derive Lagrangians: a nonlinear dynamical system with variable coefficients, (Il Nuovo Cimento B) 125 (2010) 255-269.
[39] E. T. Whittaker, A Treatise on the Analytical Dynamics of Particles and Rigid Bodies (Cambridge University Press, Cambridge, 1988, First published, 1904). · JFM 35.0682.01
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.