×

Precision spectroscopy of positronium: testing bound-state QED theory and the search for physics beyond the standard model. (English) Zbl 1508.81830

Summary: Positronium (Ps) is an exotic hydrogenic atom composed of an electron bound to a positron via the Coulomb force. Being composed of two low-mass leptons, positronium is, for all practical purposes, fully described by quantum electrodynamics (QED). The absence of hadronic components suggests that positronium energy levels and decay rates can be calculated to very high precision, limited only by the order of the corresponding perturbative expansion and the tiny effects of heavy or weakly interacting virtual particles and exotic decay modes. Moreover, as it is a low-mass particle-antiparticle system, the QED description of positronium is strongly affected by annihilation and recoil effects that are either weaker or not present in other atoms. As a result, sufficiently precise measurements of Ps energy levels and decay properties can serve as stringent tests of bound-state QED theory, and may be sensitive to processes not present in the theory, such as axion-like particles (beyond the QCD axion), or a fifth fundamental force. In addition, since positronium is an eigenstate of the fundamental symmetries C and P, various symmetry violating mechanisms can be probed through searches for anomalous decay modes. In the last three decades, there have been significant experimental advances in positron and positronium physics which open up the possibility to test QED bound-state theory with unprecedented precision. Here we present the current state-of-the-art in experimental positronium spectroscopy, and discuss explicitly how such measurements can be used to test bound-state QED theory, and how such tests may contribute to the search for physics beyond the Standard Model.

MSC:

81Q10 Selfadjoint operator theory in quantum theory, including spectral analysis
81V45 Atomic physics
81V22 Unified quantum theories
81V15 Weak interaction in quantum theory
35P10 Completeness of eigenfunctions and eigenfunction expansions in context of PDEs
81Q12 Nonselfadjoint operator theory in quantum theory including creation and destruction operators
81U90 Particle decays
22E70 Applications of Lie groups to the sciences; explicit representations
81P15 Quantum measurement theory, state operations, state preparations
Full Text: DOI

References:

[1] Bethe, H. A.; Salpeter, E. E., Quantum Mechanics of One- and Two-Electron Atoms (1957), Springer, Berlin · Zbl 0089.21006
[2] Karshenboim, S. G., Precision physics of simple atoms: QED tests, nuclear structure and fundamental constants, Phys. Rep., 422, 1-63 (2005), URL http://www.sciencedirect.com/science/article/pii/S0370157305003637
[3] Chu, S.; Mills, Jr., A. P.; Yodh, A. G.; Nagamine, K.; Miyake, Y.; Kuga, T., Laser excitation of the muonium \(1 S - 2 S\) transition, Phys. Rev. Lett., 60, 101-104 (1988), URL http://link.aps.org/doi/10.1103/PhysRevLett.60.101
[4] Pohl, R.; Daniel, H.; Hartmann, F. J.; Hauser, P.; Kottmann, F.; Markushin, V. E.; Mühlbauer, M.; Petitjean, C.; Schott, W.; Taqqu, D.; Wojciechowski-Grosshauser, P., Observation of long-lived muonic hydrogen in the \(2 S\) state, Phys. Rev. Lett., 97, Article 193402 pp. (2006), URL https://link.aps.org/doi/10.1103/PhysRevLett.97.193402
[5] Ahmadi, M.; Alves, B. X.R.; Baker, C. J.; Bertsche, W.; Capra, A.; Carruth, C.; Cesar, C. L.; Charlton, M.; Cohen, S.; Collister, R.; Eriksson, S.; Evans, A.; Evetts, N.; Fajans, J.; Friesen, T.; Fujiwara, M. C.; Gill, D. R.; Hangst, J. S.; Hardy, W. N.; Hayden, M. E.; Isaac, C. A.; Johnson, M. A.; Jones, J. M.; Jones, S. A.; Jonsell, S.; Khramov, A.; Knapp, P.; Kurchaninov, L.; Madsen, N.; Maxwell, D.; McKenna, J. T.K.; Menary, S.; Momose, T.; Munich, J. J.; Olchanski, K.; Olin, A.; Pusa, P.; Rasmussen, C.Ø.; Robicheaux, F.; Sacramento, R. L.; Sameed, M.; Sarid, E.; Silveira, D. M.; Stutter, G.; So, C.; Tharp, T. D.; Thompson, R. I.; van der Werf, D. P.; Wurtele, J. S., Characterization of the 1S-2S transition in antihydrogen, Nature, 557, 7703, 71-75 (2018)
[6] Wheeler, J. A., Polyelectrons, Ann. New York Acad. Sci., 48, 3, 219-238 (1946)
[7] Coleman, P. G., Positron Beams and their Applications (2000), World Scientific Publishing Co. Singapore
[8] Ore, A.; Powell, J. L., Three-photon annihilation of an electron-positron pair, Phys. Rev., 75, 1696-1699 (1949), URL http://link.aps.org/doi/10.1103/PhysRev.75.1696 · Zbl 0033.04102
[9] Krause-Rehberg, R.; Leipner, H., (Positron Annihilation in Semiconductors: Defect Studies. Positron Annihilation in Semiconductors: Defect Studies, Springer Series in Solid-State Sciences (2010), Springer Berlin Heidelberg)
[10] Darwin, C. G., The wave equations of the electron, Proc. R. Soc. London, Ser. A, 118, 654-680 (1928), URL https://www.jstor.org/stable/94929 · JFM 54.0973.06
[11] Gupta, S. N.; Repko, W. W.; Suchyta, Jr., C. J., Muonium and positronium potentials, Phys. Rev. D, 40, 12, 4100-4104 (1989)
[12] Salpeter, E. E.; Bethe, H. A., A relativistic equation for bound-state problems, Phys. Rev., 84, 1232-1242 (1951) · Zbl 0044.43103
[13] Caswell, W. E.; Lepage, G. P., Effective Lagrangians for bound state problems in QED, QCD, and other field theories, Phys. Lett. B, 167, 4, 437-442 (1986)
[14] Pineda, A.; Soto, J., Potential NRQED: The positronium case, Phys. Rev. D, 59, 1, Article 016005 pp. (1998), URL http://link.aps.org/doi/10.1103/PhysRevD.59.016005
[15] Govaerts, J.; Caillie, M. V., Neutrino decay of positronium in the standard model and beyond, Phys. Lett. B, 381, 4, 451-457 (1996), URL http://www.sciencedirect.com/science/article/pii/0370269396006235
[16] Karshenboim, S. G., Precision study of positronium: Testing bound state QED theory, Internat. J. Modern Phys. A, 19, 23, 3879-3896 (2004)
[17] Aoyama, T.; Hayakawa, M.; Kinoshita, T.; Nio, M., Tenth-order QED contribution to the electron \(g \mathbf{-} 2\) and an improved value of the fine structure constant, Phys. Rev. Lett., 109, Article 111807 pp. (2012), URL https://link.aps.org/doi/10.1103/PhysRevLett.109.111807
[18] Mohr, P. J.; Newell, D. B.; Taylor, B. N., CODATA recommended values of the fundamental physical constants: 2014, Rev. Modern Phys., 88, Article 035009 pp. (2016), URL https://link.aps.org/doi/10.1103/RevModPhys.88.035009
[19] Alexandrou, C., Novel applications of lattice QCD: Parton distributions, proton charge radius and neutron electric dipole moment, EPJ Web Conf., 137, 01004 (2017)
[20] Pohl, R.; Antognini, A.; Nez, F.; Amaro, F. D.; Biraben, F.; Cardoso, J. M.R.; Covita, D. S.; Dax, A.; Dhawan, S.; Fernandes, L. M.P.; Giesen, A.; Graf, T.; Hänsch, T. W.; Indelicato, P.; Julien, L.; Kao, C.-Y.; Knowles, P.; Le Bigot, E.-O.; Liu, Y.-W.; Lopes, A. M.; Ludhova, L.; Monteiro, C. M.B.; Mulhauser, F.; Nebel, T.; Rabinowitz, P.; dos Santos, J. M.F.; Schaller, L. A.; Schuhmann, K.; Schwob, C.; Taqqu, D.; Veloso, J. F.C. A.; Kottmann, F., The size of the proton, Nature, 466, 7303, 213-216 (2010)
[21] Beyer, A.; Maisenbacher, L.; Matveev, A.; Pohl, R.; Khabarova, K.; Grinin, A.; Lamour, T.; Yost, D. C.; Hänsch, T. W.; Kolachevsky, N.; Udem, T., The Rydberg constant and proton size from atomic hydrogen, Science, 358, 6359, 79-85 (2017) · Zbl 1404.81324
[22] Fleurbaey, H.; Galtier, S.; Thomas, S.; Bonnaud, M.; Julien, L.; Biraben, F.m.c.; Nez, F.m.c.; Abgrall, M.; Guéna, J., New measurement of the \(1 S - 3 S\) transition frequency of hydrogen: Contribution to the proton charge radius puzzle, Phys. Rev. Lett., 120, Article 183001 pp. (2018), URL https://link.aps.org/doi/10.1103/PhysRevLett.120.183001
[23] ATLAS Collaboration and CMS Collaboration, H., Combined measurement of the higgs boson mass in \(p p\) collisions at \(\sqrt{ s} = 7\) and 8 TeV with the ATLAS and CMS experiments, Phys. Rev. Lett., 114, Article 191803 pp. (2015), URL https://link.aps.org/doi/10.1103/PhysRevLett.114.191803
[24] Safronova, M. S.; Budker, D.; DeMille, D.; Kimball, D. F.J.; Derevianko, A.; Clark, C. W., Search for new physics with atoms and molecules, Rev. Modern Phys., 90, Article 025008 pp. (2018), URL https://link.aps.org/doi/10.1103/RevModPhys.90.025008
[25] Czarnecki, A.; Melnikov, K.; Yelkhovsky, A., Positronium hyperfine splitting: Analytical value at \(O ( m \alpha^6 )\), Phys. Rev. Lett., 82, 311-314 (1999), URL http://link.aps.org/doi/10.1103/PhysRevLett.82.311
[26] Crivelli, P.; Cesar, C. L.; Gendotti, U., Advances towards a new measurement of the 1S-2S transition of positronium, Can. J. Phys., 89, 1, 29-35 (2011)
[27] Adkins, G. S., Higher order corrections to positronium energy levels, J. Phys. Conf. Ser., 1138, Article 012005 pp. (2018)
[28] Alonso, A. M.; Hogan, S. D.; Cassidy, D. B., Production of \(2^3 S_1\) positronium atoms by single-photon excitation in an electric field, Phys. Rev. A, 95, Article 033408 pp. (2017), URL https://link.aps.org/doi/10.1103/PhysRevA.95.033408
[29] Ishida, A.; Namba, T.; Asai, S.; Kobayashi, T.; Saito, H.; Yoshida, M.; Tanaka, K.; Yamamoto, A., New precision measurement of hyperfine splitting of positronium, Phys. Lett. B, 734, 338-344 (2014)
[30] Karshenboim, S. G., Precision physics of simple atoms and constraints on a light boson with ultraweak coupling, Phys. Rev. Lett., 104, Article 220406 pp. (2010), URL https://link.aps.org/doi/10.1103/PhysRevLett.104.220406
[31] Delaunay, C.; Frugiuele, C.; Fuchs, E.; Soreq, Y., Probing new spin-independent interactions through precision spectroscopy in atoms with few electrons, Phys. Rev. D, 96, Article 115002 pp. (2017), URL https://link.aps.org/doi/10.1103/PhysRevD.96.115002
[32] Frugiuele, C.; Pérez-Ríos, J.; Peset, C., Current and future perspectives of positronium and muonium spectroscopy as dark sectors probe, Phys. Rev. D, 100, Article 015010 pp. (2019), URL https://link.aps.org/doi/10.1103/PhysRevD.100.015010
[33] Graham, P. W.; Kaplan, D. E.; Rajendran, S., Cosmological relaxation of the electroweak scale, Phys. Rev. Lett., 115, 22, Article 221801 pp. (2015)
[34] Wall, T. E.; Alonso, A. M.; Cooper, B. S.; Deller, A.; Hogan, S. D.; Cassidy, D. B., Selective production of rydberg-stark states of positronium, Phys. Rev. Lett., 114, Article 173001 pp. (2015), URL http://link.aps.org/doi/10.1103/PhysRevLett.114.173001
[35] Hanneke, D.; Fogwell, S.; Gabrielse, G., New measurement of the electron magnetic moment and the fine structure constant, Phys. Rev. Lett., 100, Article 120801 pp. (2008), URL http://link.aps.org/doi/10.1103/PhysRevLett.100.120801
[36] Hardy, E.; Lasenby, R., Stellar cooling bounds on new light particles: plasma mixing effects, J. High Energy Phys., 2017, 2, 33 (2017) · Zbl 1377.85008
[37] Joyce, A.; Jain, B.; Khoury, J.; Trodden, M., Beyond the cosmological standard model, Phys. Rep., 568, 1-98 (2015)
[38] De Salas, P. F.; Gariazzo, S.; Mena, O.; Ternes, C. A.; Tórtola, M., Neutrino mass ordering from oscillations and beyond: 2018 status and future prospects, Front. Astron. Space Sci., 5, 36 (2018), arXiv:1806.11051
[39] Bernreuther, W.; Löw, U.; Ma, J. P.; Nachtmann, O., How to test CP, T, and CPT invariance in the three photon decay of polarized \({}^3 S_1\) positronium, Z. Phys. C Part. Fields, 41, 1, 143-158 (1988)
[40] Ahmadi, M.; Alves, B. X.R.; Baker, C. J.; Bertsche, W.; Butler, E.; Capra, A.; Carruth, C.; Cesar, C. L.; Charlton, M.; Cohen, S.; Collister, R.; Eriksson, S.; Evans, A.; Evetts, N.; Fajans, J.; Friesen, T.; Fujiwara, M. C.; Gill, D. R.; Gutierrez, A.; Hangst, J. S.; Hardy, W. N.; Hayden, M. E.; Isaac, C. A.; Ishida, A.; Johnson, M. A.; Jones, S. A.; Jonsell, S.; Kurchaninov, L.; Madsen, N.; Mathers, M.; Maxwell, D.; McKenna, J. T.K.; Menary, S.; Michan, J. M.; Momose, T.; Munich, J. J.; Nolan, P.; Olchanski, K.; Olin, A.; Pusa, P.; Rasmussen, C.Ø.; Robicheaux, F.; Sacramento, R. L.; Sameed, M.; Sarid, E.; Silveira, D. M.; Stracka, S.; Stutter, G.; So, C.; Tharp, T. D.; Thompson, J. E.; Thompson, R. I.; van der Werf, D. P.; Wurtele, J. S., Observation of the 1S-2S transition in trapped antihydrogen, Nature, 541, 506 (2016)
[41] Andreev, V., Improved limit on the electric dipole moment of the electron, Nature, 562, 7727, 355-360 (2018)
[42] DeBenedetti, S.; Corben, H. C., Positronium, Annu. Rev. Nucl. Sci., 4, 191-218 (1954) · Zbl 0058.44502
[43] Maglich, B., Discovery of positronium, Adventures Expt. Phys., 4, 63-127 (1973)
[44] Stroscio, M. A., Positronium: A review of the theory, Phys. Rep., 22 (1975), 215-177
[45] Murota, T., Hyperfine structure of positronium, Progr. Theoret. Phys. Suppl., 95, 46-77 (1988)
[46] Berko, S.; Pendleton, H. N., Positronium, Annu. Rev. Nucl. Part. Sci., 30, 543-581 (1980)
[47] Rich, A., Recent experimental advances in positronium research, Rev. Modern Phys., 53, 1, 127 (1981)
[48] Chu, S.; Mills, Jr., A. P., Excitation of the positronium \(1 {}^3 \operatorname{S}_1 \to 2 {}^3 \operatorname{S}_1\) two-photon transition, Phys. Rev. Lett., 48, 1333-1337 (1982), URL http://link.aps.org/doi/10.1103/PhysRevLett.48.1333
[49] Mills, Jr., A. P.; Chu, S., Precision measurements in positronium, (Kinoshita, T., Quantum Electrodynamics. Quantum Electrodynamics, Advanced Series on Directions in High Energy Physics-Vol. 7 (1990), World Scientific: World Scientific Singapore), 774-821 · Zbl 0997.81574
[50] Rich, A.; Condi, R. S.; Gidley, D. W.; Skalsey, M.; Zitzewitz, P. W., Tests of QED and related symmetry principles using positrons and positronium, (Haroche, S.; Gay, J. C.; Grynberg, G., Atomic Physics, Vol. 11 (1988), World Scientific: World Scientific Singapore), 337-353
[51] Bass, S., QED and fundamental symmetries in positronium decays, Acta Phys. Polon. B, 50, 7, 1319 (2019)
[52] Rubbia, A., Positronium as a probe for new physics beyond the standard model, Internat. J. Modern Phys. A, 19, 23, 3961-3985 (2004)
[53] Gninenko, S. N.; Krasnikov, N. V.; Matveev, V. A.; Rubbia, A., Some aspects of positronium physics, Phys. Part. Nucl., 37, 321-346 (2006)
[54] Charlton, M.; Humberston, J. W., (Positron Physics. Positron Physics, Cambridge Monographs on Atomic, Molecular and Chemical Physics, vol. II (2001), Cambridge University Press: Cambridge University Press Cambridge)
[55] Mills, Jr., A. P., Physics with many positrons, Riv. Nuovo Cimento, 34, 4, 151-252 (2011)
[56] Mills, Jr., A. P., Chapter five - experiments with dense low-energy positrons and positronium, (Ennio Arimondo, C. C.L.; Yelin, S. F., Advances in Atomic, Molecular, and Optical Physics. Advances in Atomic, Molecular, and Optical Physics, Advances In Atomic, Molecular, and Optical Physics, vol. 65 (2016), Academic Press), 265-290
[57] Cassidy, D. B., Experimental progress in positronium laser physics, Eur. Phys. J. D, 72, 3, 53 (2018)
[58] Danielson, J. R.; Dubin, D. H.E.; Greaves, R. G.; Surko, C. M., Plasma and trap-based techniques for science with positrons, Rev. Modern Phys., 87, 247-306 (2015), URL http://link.aps.org/doi/10.1103/RevModPhys.87.247
[59] Dirac, P. A.M., Quantised singularities in the electromagnetic field, Proc. R. Soc. London A: Math. Phys. Eng. Sci., 133, 821, 60-72 (1931), URL http://rspa.royalsocietypublishing.org/content/133/821/60 · JFM 57.1581.06
[60] Anderson, C. D., The positive electron, Phys. Rev., 43, 491-494 (1933), URL http://link.aps.org/doi/10.1103/PhysRev.43.491
[61] Mohorovičić, S., Möglichkeit neuer Elemente und ihre Bedeutung für Die astrophysik, Astron. Nachr., 253, 4, 93-108 (1934) · Zbl 0009.41303
[62] Kragh, H., From “electrum” to positronium, J. Chem. Educ., 67, 3, 196-197 (1990)
[63] Randić, M., Positronium \(-\) hydrogen like and unlike, Croatica Chemica Acta, 82, 791-800 (2009), URL https://hrcak.srce.hr/index.php?show=clanak&id_clanak_jezik=70552
[64] Ruark, A. E., Positronium, Phys. Rev., 68, 11-12, 278 (1945)
[65] Pirenne, J., Le champ propre et l’interaction des particules de Dirac suivant l’êlectrodynamique quantique, Arch. Sci. Phys. Naturelles, 28, 233-272 (1946) · Zbl 0060.45408
[66] Pirenne, J., Le champ propre et l’interaction des particules de Dirac suivant l’êlectrodynamique quantique (continued), Arch. Sci. Phys. Naturelles, 29, 121-150 (1947)
[67] Pirenne, J., Le champ propre et l’interaction des particules de Dirac suivant l’êlectrodynamique quantique. II. L’interaction de deux particules de Dirac, Arch. Sci. Phys. Naturelles, 29, 207-238 (1947) · Zbl 0060.45408
[68] Pirenne, J., Le champ propre et l’interaction des particules de Dirac suivant l’êlectrodynamique quantique. III. Le systèm électron-positron, Arch. Sci. Phys. Naturelles, 29, 265-300 (1947)
[69] Deutsch, M., Evidence for the formation of positronium in gases, Phys. Rev., 82, 455-456 (1951), URL http://link.aps.org/doi/10.1103/PhysRev.82.455
[70] Zatorski, J., \( O ( m \alpha^6 )\) Corrections to energy levels of positronium with nonvanishing orbital angular momentum, Phys. Rev. A, 78, 3, Article 032103 pp. (2008)
[71] Bernreuther, W.; Nachtmann, O., Weak interaction effects in positronium, Z. Phys. C Part. Fields, 11, 3, 235-245 (1981)
[72] Alcorta, R.; Grifols, J. A., Electro-weak corrections to the hyperfine structure of positronium, Ann. Physics, 229, 109-159 (1994)
[73] 2018 CODATA recommended values, URL https://physics.nist.gov/cuu/Constants/index.html.
[74] Berestetski, V. B.; Landau, L. D., On the interaction between electrons and positrons, Zh. Eksp. Teor. Fiz., 19, 673-679 (1949)
[75] Berestetski, V. B., On the spectrum of positronium, Zh. Eksp. Teor. Fiz., 19, 1130-1135 (1949)
[76] Ferrell, R. A., The positronium fine structure, Phys. Rev., 84, 858-859 (1951)
[77] Ferrell, R. A., The Fine Structure of Positronium (1951), Princeton University, Department of Physics, Adviser A. S. Wightman
[78] Karplus, R.; Klein, A., Electrodynamic displacement of atomic energy levels. III. The hyperfine structure of positronium, Phys. Rev., 87, 848-858 (1952) · Zbl 0048.22502
[79] Fulton, T.; Karplus, R., Bound state correction in two-body systems, Phys. Rev., 93, 5, 1109-1116 (1954) · Zbl 0058.43202
[80] Fulton, T.; Martin, P. C., Radiative corrections in positronium, Phys. Rev., 93, 903-904 (1954)
[81] Fulton, T.; Martin, P. C., Two-body system in quantum electrodynamics. energy levels of positronium, Phys. Rev., 95, 811-822 (1954) · Zbl 0059.21902
[82] Eides, M. I.; Grotch, H.; Shelyuto, V. A., (Theory of Light Hydrogenic Bound States. Theory of Light Hydrogenic Bound States, Springer Tracts in Modern Physics, vol. 222 (2007), Springer: Springer Berlin)
[83] Labelle, P.; Zebarjad, S. M., Derivation of the lamb shift using an effective field theory, Can. J. Phys., 77, 4, 267-278 (1999), URL https://www.nrcresearchpress.com/doi/10.1139/p98-056#.XyKxyC3MxsY
[84] Pineda, A.; Soto, J., Effective field theory for ultrasoft momenta in NRQCD and NRQED, Nucl. Phys. B (Proc. Suppl.), 64, 1-3, 428-432 (1998)
[85] Fulton, T.; Owen, D. A.; Repko, W. W., Corrections to the positronium hyperfine structure of order \(\alpha^2 \ln \alpha^{- 1}\), Phys. Rev. Lett., 24, 19, 1035-1037 (1970)
[86] Fulton, T.; Owen, D. A.; Repko, W. W., Hyperfine structure of positronium, Phys. Rev. A, 4, 5, 1802-1811 (1971)
[87] Barbieri, R.; Christillin, P.; Remiddi, E., On the theoretical value of positronium ground state splitting, Phys. Lett. B, 43, 411-412 (1973)
[88] Barbieri, R.; Christillin, P.; Remiddi, E., Vacuum polarization and positronium-ground-state splitting, Phys. Rev. A, 8, 5, 2266-2271 (1973)
[89] Owen, D. A., Fourth-order vacuum polarization correction to the positronium hyperfine structure, Phys. Rev. Lett., 30, 19, 887-888 (1973)
[90] Ng, Y. J., Electron-Electron Scattering and Hyperfine Structure of Positronium (1974), Harvard University: Harvard University Cambridge, Massachusetts, (Ph.D. thesis)
[91] Cung, V. K.; Fulton, T.; Repko, W. W.; Schnitzler, D., Complete reduction of fermion-antifermion bethe-salpeter equation with static kernel, Ann. Phys. (N.Y.), 96, 261-285 (1976), URL http://www.sciencedirect.com/science/article/pii/0003491676901925
[92] Barbieri, R.; Remiddi, E., More \(\alpha^6 \ln \alpha\) terms in positronium ground state splitting, Phys. Lett. B, 65, 3, 258-262 (1976)
[93] Lepage, G. P., Analytic bound-state solutions in a relativistic two-body formalism with applications in muonium and positronium, Phys. Rev. A, 16, 3, 863-876 (1977)
[94] Bodwin, G. T.; Yennie, D. R., Hyperfine splitting in positronium and muonium, Phys. Rep., 43, 267-303 (1978)
[95] Caswell, W. E.; Lepage, G. P., \( O ( \alpha^2 \ln ( \alpha^{- 1} ) )\) Corrections in positronium: Hyperfine splitting and decay rate, Phys. Rev. A, 20, 1, 36-43 (1979)
[96] Fell, R. N., Order \(\alpha^4 \ln \alpha^{- 1} f_{\operatorname{RY D}}\) corrections to the \(n = 1\) and \(n = 2\) energy levels of positronium, Phys. Rev. Lett., 68, 1, 25-28 (1992)
[97] Khriplovich, I. B.; Milstein, A. I.; Yelkhovsky, A. S., Corrections of \(O ( \alpha^6 \log \alpha )\) in the two-body qed problem, Phys. Lett. B, 282, 1-2, 237-242 (1992)
[98] Elkhovsky, A. S.; Milstein, A. I.; Khriplovich, I. B., Logarithmic corrections in the two-body problem in QED, Sov. Phys. JETP, 75, 6, 954-959 (1992), Originally published as Zh. Eksp. Teor. Fiz. 102, 1768-1780 (1992), URL http://www.jetp.ac.ru/cgi-bin/dn/e_075_06_0954.pdf
[99] Fell, R. N., Single-transverse-photon contributions of order \(\alpha^6 \ln ( \alpha )\) to the energy levels of positronium, Phys. Rev. A, 48, 4, 2634-2667 (1993)
[100] Fulton, T., Is there a need to calculate positronium and muonium hfs to higher order?, Phys. Rev. A, 7, 1, 377-379 (1973)
[101] Samuel, M. A., An order-\( \alpha^2\) correction to the hyperfine structure of positronium due to the Källen-Sabry potential, Phys. Rev. A, 10, 4, 1450-1451 (1974)
[102] Cung, V. K.; Devoto, A.; Fulton, T.; Repko, W. W., Three photon virtual annihilation contributions to positronium hyperfine structure, Phys. Lett. B, 68, 5, 474-476 (1977)
[103] Cung, V. K.; Devoto, A.; Fulton, T.; Repko, W. W., Order \(\alpha^2\) corrections to the positronium hyperfine interval arising from three-photon virtual annihilation, Il Nuovo Cimento, 43 A, 643-657 (1978)
[104] Cung, V. K.; Devoto, A.; Fulton, T.; Repko, W. W., \( m \alpha^6\) Contributions to the positronium hyperfine structure from two-photon virtual annihilation, Phys. Lett. B, 78, 1, 116-118 (1978)
[105] Caswell, W. E.; Lepage, G. P., Reduction of the Bethe-Salpeter equation to an equivalent Schrödinger equation, with applications, Phys. Rev. A, 18, 810-819 (1978)
[106] Cung, V. K.; Devoto, A.; Fulton, T.; Repko, W. W., Order-\( \alpha^4 R_\infty\) contributions to positronium hyperfine structure from radiative corrections to two-photon virtual annihilation, Phys. Rev. A, 19, 5, 1886-1892 (1979)
[107] Buchmüller, W.; Remiddi, E., Radiative corrections to positronium energy levels, Nuclear Phys. B, 162, 2, 250-270 (1980)
[108] Buchmüller, W.; Remiddi, E., Contributions to positronium hyperfine splitting from second-order perturbation theory, Il Nuovo Cimento, 60 A, 2, 109-119 (1980)
[109] Hostler, L. C.; Repko, W. W., Corrections to positronium levels using a coordinate representation of the reduced green’s function, Phys. Rev. A, 23, 5, 2425-2429 (1981)
[110] Fulton, T., Corrections to the balmer-energy differences in positronium, Phys. Rev. A, 26, 3, 1794-1795 (1982)
[111] Sapirstein, J. R.; Terray, E. A.; Yennie, D. R., Additional radiative-recoil corrections to muonium and positronium hyperfine splitting, Phys. Rev. Lett., 51, 11, 982-984 (1983)
[112] Sapirstein, J. R.; Terray, E. A.; Yennie, D. R., Radiative-recoil corrections to muonium and positronium hyperfine splitting, Phys. Rev. D, 29, 10, 2290-2314 (1984)
[113] Adkins, G. S.; Bui, M. H.T.; Zhu, D., New calculation of the three-photon-annihilation contribution to the positronium hyperfine interval, Phys. Rev. A, 37, 4071-4078 (1988)
[114] Adkins, G. S.; Aksu, Y. M.; Bui, M. H.T., Calculation of the two-photon-annihilation contribution to the positronium hyperfine interval at order \(m \alpha^6\), Phys. Rev. A, 47, 4, 2640-2652 (1993)
[115] Karshenboim, S. G., Corrections of order \(\alpha^2\) to the hyperfine splitting in positronium, Phys. At. Nucl., 56, 12, 1710-1719 (1993)
[116] Zhang, T.; Xiao, L., Hyperfine corrections to order \(\alpha^6\) in a relativistic formalism for positronium, Phys. Rev. A, 49, 4, 2411-2414 (1994)
[117] Zhang, T.; Drake, G. W.F., QED correction of \(O ( \alpha^6 m c^2 )\) to the fine structure splittings of helium and positronium, Phys. Rev. Lett., 72, 26, 4078-4081 (1994), Erratum published as PRL 73, 2637 (1994): DOI: 10.1103/PhysRevLett.73.2637
[118] Eides, M. I.; Grotch, H., Corrections of order \(\alpha^6\) to s levels of two-body systems, Phys. Rev. A, 52, 2, 1757-1760 (1995)
[119] Adkins, G. S.; Fell, R. N.; Mitrikov, P. M., Calculation of the positronium hyperfine interval, Phys. Rev. Lett., 79, 18, 3383-3386 (1997)
[120] Hoang, A. H.; Labelle, P.; Zebarjad, S. M., Single photon annihilation contributions to the positronium hyperfine splitting to order \(m_e \alpha^6\), Phys. Rev. Lett., 79, 18, 3387-3390 (1997)
[121] Pachucki, K., Effective Hamiltonian approach to the bound state: Positronium hyperfine structure, Phys. Rev. A, 56, 1, 297-304 (1997)
[122] Pachucki, K., Recoil effects in positronium energy levels to order \(\alpha^6\), Phys. Rev. Lett., 79, 21, 4120-4123 (1997)
[123] Adkins, G. S.; Sapirstein, J. R., Order \(m \alpha^6\) contributions to ground-state hyperfine splitting in positronium, Phys. Rev. A, 58, 5, 3552-3560 (1998)
[124] Adkins, G. S.; Sapirstein, J. R., Erratum: Order \(m \alpha^6\) contributions to ground-state hyperfine splitting in positronium [phys. Rev. a 58, 3552 (1998)],, Phys. Rev. A, 61, 6, 069902(E) (2000)
[125] Pachucki, K.; Karshenboim, S. G., Complete results for positronium energy levels at order \(m \alpha^6\), Phys. Rev. Lett., 80, 10, 2101-2104 (1998)
[126] Czarnecki, A.; Melnikov, K.; Yelkhovsky, A., Positronium s-state spectrum: Analytic results at \(O ( m \alpha^6 )\), Phys. Rev. A, 59, 4316-4330 (1999)
[127] Hoang, A. H.; Labelle, P.; Zebarjad, S. M., \( O ( m_e \alpha^6 )\) Positronium hyperfine splitting due to single-photon annihilation, Phys. Rev. A, 62, 1, Article 012109 pp. (2000)
[128] Burichenko, A. P., “Recoil”-effect-induced contribution of order \(m \alpha^6\) to the hyperfine splitting of the positronium ground state, Phys. At. Nucl., 64, 1628-1636 (2001)
[129] Adkins, G. S.; Fell, R. N.; Mitrikov, P. M., Calculation of the positronium hyperfine interval using the bethe-salpeter formalism, Phys. Rev. A, 65, 4, Article 042103 pp. (2002)
[130] Khriplovich, I. B.; Milstein, A. I.; Yelkhovsky, A. S., Order \(\alpha^4 R_\infty\) corrections to the fine-structure splitting of positronium p levels, Phys. Rev. Lett., 71, 26, 4323-4325 (1993)
[131] Elkhovsky, A. S.; Khriplovich, I. B.; Mil’stein, A. I., Corrections of order \(\alpha^4 R_\infty\) to the positronium p levels, Sov. Phys. JETP, 78, 2, 159-164 (1994), URL http://www.jetp.ac.ru/cgi-bin/dn/e_078_02_0159.pdf
[132] Golosov, E. A.; Elkhovskii, A. S.; Milshtein, A. I.; Khriplovich, I. B., Order \(\alpha^4 ( m / M ) R_\infty\) corrections to hydrogen p levels, Sov. Phys. JETP, 80, 2, 208-211 (1995), URL http://jetp.ac.ru/cgi-bin/dn/e_080_02_0208.pdf
[133] Adkins, G. S.; Akers, B.; Alam, M. F.; Tran, L. M.; Zhang, X., Calculation of higher order corrections to positronium energy levels, Proc. Sci., 353, 004 (2019), (FFK2019)
[134] Karshenboim, S. G., New logarithmic contributions in muonium and positronium, JETP, 78, 4, 541-546 (1993), URL http://jetp.ac.ru/cgi-bin/e/index/e/76/4/p541?a=list
[135] Melnikov, K.; Yelkhovsky, A., \( O ( m \alpha^7 \ln^2 \alpha )\) Corrections to positronium energy levels, Phys. Lett. B, 458, 1, 143-151 (1999)
[136] Pachucki, K.; Karshenboim, S. G., Higher-order recoil corrections to energy levels of two-body systems, Phys. Rev. A, 60, 4, 2792-2798 (1999)
[137] Kniehl, B. A.; Penin, A. A., Order \(\alpha^7 \ln ( 1 / \alpha )\) contribution to positronium hyperfine splitting, Phys. Rev. Lett., 85, 24, 5094-5097 (2000)
[138] Melnikov, K.; Yelkhovsky, A., \( O ( \alpha^3 \ln \alpha )\) Corrections to muonium and positronium hyperfine splitting, Phys. Rev. Lett., 86, 8, 1498-1501 (2001)
[139] Hill, R. J., New value of \(m_\mu / m_e\) from muonium hyperfine splitting, Phys. Rev. Lett., 86, 15, 3280-3283 (2001)
[140] Czarnecki, A.; Jentschura, U. D.; Pachucki, K., Calculation of the one- and two-loop lamb shift for arbitrary excited hydrogenic states, Phys. Rev. Lett., 95, 18, Article 180404 pp. (2005), See also the erratum: DOI: 10.1103/PhysRevLett.95.199903
[141] Jentschura, U. D.; Czarnecki, A.; Pachucki, K., Nonrelativistic QED approach to the lamb shift, Phys. Rev. A, 72, 6, Article 062102 pp. (2005)
[142] Marcu, S. R., Ultrasoft Contribution to the Positronium Hyperfine Splitting (2011), University of Alberta, (Master’s thesis)
[143] Baker, M.; Marquard, P.; Penin, A. A.; Piclum, J.; Steinhauser, M., Hyperfine splitting in positronium to \(O ( \alpha^7 m_e )\): One photon annihilation contribution, Phys. Rev. Lett., 112, Article 120407 pp. (2014)
[144] Adkins, G. S.; Fell, R. N., Positronium hyperfine splitting at order \(m \alpha^7\): Light-by-light scattering in the two-photon-exchange channel, Phys. Rev. A, 89, Article 052518 pp. (2014)
[145] Eides, M. I.; Shelyuto, V. A., Hard nonlogarithmic corrections of order \(m \alpha^7\) to hyperfine splitting in positronium, Phys. Rev. D, 89, 11 (2014), 111301(R)
[146] Adkins, G. S.; Parsons, C.; Salinger, M. D.; Wang, R.; Fell, R. N., Positronium energy levels at order \(m \alpha^7\): Light-by-light scattering in the two-photon-annihilation channel, Phys. Rev. A, 90, Article 042502 pp. (2014)
[147] Eides, M. I.; Shelyuto, V. A., Hard three-loop corrections to hyperfine splitting in positronium and muonium, Phys. Rev. D, 92, 1, Article 013010 pp. (2015)
[148] Adkins, G. S.; Kim, M.; Parsons, C.; Fell, R. N., Three-photon-annihilation contributions to positronium energies at order \(m \alpha^7\), Phys. Rev. Lett., 115, 23, Article 233401 pp. (2015)
[149] Adkins, G. S.; Parsons, C.; Salinger, M. D.; Wang, R., Positronium energy levels at order \(m \alpha^7\): Vacuum polarization corrections in the two-photon-annihilation channel, Phys. Lett. B, 747, 551-555 (2015)
[150] Eides, M. I.; Shelyuto, V. A., Hard three-loop corrections to hyperfine splitting, Internat. J. Modern Phys. A, 31, 2-3, Article 1641030 pp. (2016)
[151] Eides, M. I.; Shelyuto, V. A., Hyperfine splitting in muonium and positronium, Internat. J. Modern Phys. A, 31, Article 1645034 pp. (2016)
[152] Adkins, G. S.; Tran, L. M.; Wang, R., Positronium energy levels at order \(m \alpha^7\): Product contributions in the two-photon-annihilation channel, Phys. Rev. A, 93, 5, Article 052511 pp. (2016)
[153] Eides, M. I.; Shelyuto, V. A., One more hard three-loop correction to parapositronium energy levels, Phys. Rev. D, 96, Article 011301 pp. (2017)
[154] Adkins, G. S., Higher order corrections to positronium energy levels, J. Phys.: Conf. Ser., 1138, Article 012005 pp. (2018)
[155] Manohar, A. V.; Stewart, I. W., Logarithms of \(\alpha\) in QED bound states from the renormalization group, Phys. Rev. Lett., 85, 11, 2248-2251 (2000)
[156] Lamm, H., P-state positronium for precision physics: An ultrafine splitting at \(\alpha^6\), Phys. Rev. A, 96, 2, Article 022515 pp. (2017)
[157] Lebed, R. F.; Swanson, E. S., Quarkonium \(h\) states as arbiters of exoticity, Phys. Rev. D, 96, 5, Article 056015 pp. (2017)
[158] Czarnecki, A.; Karshenboim, S. G., Decays of positronium, (Levchenko, B. B.; Savrin, V. I., Proceedings of the 14th International Workshop on High Energy Physics and Quantum Field Theory (QFTHEP99, Moscow, 1999) (2000), MSU Press), 538-544, Available as hep-ph/9911410, URL https://arxiv.org/abs/hep-ph/9911410
[159] Gninenko, S. N.; Krasnikov, N. V.; Rubbia, A., Positronium physics beyond the standard model, Modern Phys. Lett. A, 17, 26, 1713-1724 (2002)
[160] Al-Ramadhan, A. H.; Gidley, D. W., New precision measurement of the decay rate of singlet positronium, Phys. Rev. Lett., 72, 1632-1635 (1994)
[161] Kataoka, Y.; Asai, S.; Kobayashi, T., First test of \(O ( \alpha^2 )\) correction of the orthopositronium decay rate, Phys. Lett. B, 671, 2, 219-223 (2009), URL http://www.sciencedirect.com/science/article/pii/S0370269308014688
[162] Harris, I.; Brown, L. M., Radiative corrections to pair annihilation, Phys. Rev., 105, 5, 1656-1661 (1957) · Zbl 0079.42803
[163] Brown, L. M.; Feynman, R. P., Radiative corrections to compton scattering, Phys. Rev., 85, 2, 231-244 (1952) · Zbl 0046.43810
[164] Khriplovich, I. B.; Yelkhovsky, A. S., On the radiative corrections \(\alpha^2 l n \alpha\) to the positronium decay rate, Phys. Lett. B, 246, 3-4, 520-522 (1990)
[165] Czarnecki, A.; Melnikov, K.; Yelkhovsky, A., \( \alpha^2\) Corrections to parapositronium decay, Phys. Rev. Lett., 83, 6, 1135-1138 (1999)
[166] Czarnecki, A.; Melnikov, K.; Yelkhovsky, A., Erratum: \( \alpha^2\) corrections to parapositronium decay [Phys. Rev. Lett. 83, 1135 (1999)], Phys. Rev. Lett., 85, 10, 2221 (2000)
[167] Czarnecki, A.; Melnikov, K.; Yelkhovsky, A., Calculation of \(\alpha^2\) corrections to parapositronium decay, Phys. Rev. A, 61, 5, Article 052502 pp. (2000)
[168] Czarnecki, A.; Melnikov, K.; Yelkhovsky, A., Erratum: Calculation of \(\alpha^2\) corrections to parapositronium decay [Phys. Rev. A 61, 052502 (2000)], Phys. Rev. A, 62, 5, Article 059902 pp. (2000)
[169] Adkins, G. S.; McGovern, N. M.; Fell, R. N.; Sapirstein, J., Two-loop corrections to the decay rate of parapositronium, Phys. Rev. A, 68, Article 032512 pp. (2003), URL http://link.aps.org/doi/10.1103/PhysRevA.68.032512
[170] Kniehl, B. A.; Penin, A. A., Order \(\alpha^3 \ln ( 1 / \alpha )\) corrections to positronium decays, Phys. Rev. Lett., 85, 6, 1210-1213 (2000), [Erratum: Phys. Rev. Lett. 85, 3065 (2000)]
[171] Billoire, A.; Lacaze, R.; Morel, A.; Navelet, H., The OZI rule violating radiative decays of the heavy pseudoscalars, Phys. Lett. B, 78, 140-143 (1978)
[172] Muta, T.; Niuya, T., Nonplanar 4-jets in quarkonium decays as a probe for 3-gluon coupling, Progr. Theoret. Phys., 68, 5, 1735-1748 (1982)
[173] Lepage, G. P.; Mackenzie, P. B.; Streng, K. H.; Zerwas, P. W., Multiphoton decays of positronium, Phys. Rev. A, 28, 5, 3090-3091 (1983)
[174] Adkins, G. S.; Brown, F. R., Rate for positronium decay to five photons, Phys. Rev. A, 28, 1164-1165 (1983)
[175] S. Adachi, Bachelor’s thesis, Tokyo Metropolitan University, 1990, as reported in [425].
[176] Adkins, G. S.; Pfahl, E. D., Order-\( \alpha\) radiative correction to the rate for parapositronium decay to four photons, Phys. Rev. A, R915-R918 (1999)
[177] Pokraka, A.; Czarnecki, A., Parapositronium can decay into three photons, Phys. Rev. D, 96, Article 093002 pp. (2017), URL https://link.aps.org/doi/10.1103/PhysRevD.96.093002
[178] Pérez-Ríos, J.; Love, S. T., Effective single photon decay mode of positronium via electroweak interactions, J. Phys. B: At. Mol. Opt. Phys., 48, 24, Article 244009 pp. (2015)
[179] Pokraka, A.; Czarnecki, A., Positronium decay into a photon and neutrinos, Phys. Rev. D, 94, Article 113012 pp. (2016), URL https://link.aps.org/doi/10.1103/PhysRevD.94.113012
[180] Pascual, P.; de Rafael, E., Photon-photon scattering contribution to the decay rate of orthopositronium, Lett. Nuovo Cimento, IV, 24, 1144-1146 (1970)
[181] Stroscio, M. A.; Holt, J. M., Radiative corrections to the decay rate of orthopositronium, Phys. Rev. A, 10, 3, 749-755 (1974)
[182] Caswell, W. E.; Lepage, G. P.; Sapirstein, J., \( O ( \alpha )\) Corrections to the decay rate of orthopositronium, Phys. Rev. Lett., 38, 488-491 (1977)
[183] Adkins, G. S., Radiative corrections to positronium decay, Ann. Physics, 146, 78-128 (1983)
[184] Stroscio, M. A., Exact first-order electron self-energy contribution to the decay rate of orthopositronium, Phys. Rev. Lett., 48, 9, 571-573 (1982)
[185] Adkins, G. S., Analytic evaluation of an \(O ( \alpha )\) vertex correction to the decay rate of orthopositronium, Phys. Rev. A, 27, 1, 530-532 (1983)
[186] Adkins, G. S., Inner vertex contribution to the decay rate of orthopositronium, Phys. Rev. A, 31, 3, 1250-1252 (1985)
[187] Dvoeglazov, V. V.; Faustov, R. N.; Tyukhtyaev, Y. N., Decay rate of a positronium. Review of theory and experiment, Modern Phys. Lett. A, 8, 34, 3263-3272 (1993)
[188] Dobroliubov, M. I.; Gninenko, S. N.; Ignatiev, A. Y.; Matveev, V. A., Orthopositronium lifetime problem, Internat. J. Modern Phys. A, 8, 17, 2859-2874 (1993)
[189] Sillou, D., Status of orthopositronium decay rate measurements, Internat. J. Modern Phys. A, 19, 23, 3919-3925 (2004)
[190] Burichenko, A. P., Large contribution to the correction \(\sim \alpha^2\) to the width of orthopositronium, Phys. At. Nucl., 56, 640-642 (1993), [Yad. Fiz. 56, 123-127 (1993)]
[191] Adkins, G. S., Analytic evaluation of the orthopositronium-to-three-photon decay amplitudes to one-loop order, Phys. Rev. Lett., 76, 4903-4906 (1996)
[192] Burichenko, A. P.; Ivanov, D. Y., Contribution of vacuum polarization to a correction of order \(\alpha^2\) to the positronium width, Phys. At. Nucl., 58, 832-834 (1995)
[193] Adkins, G. S.; Shiferaw, Y., Two-loop corrections to the orthopositronium and parapositronium decay rates due to vacuum polarization, Phys. Rev. A, 52, 3, 2442-2445 (1995), URL http://link.aps.org/doi/10.1103/PhysRevA.52.2442
[194] Adkins, G. S.; Lymberopoulos, M., Light-by-light scattering contribution to the decay rate of orthopositronium at order \(\alpha^2 ? G a m m a_{\operatorname{LO}} \), Phys. Rev. A, 51, R875-R878 (1995), URL http://link.aps.org/doi/10.1103/PhysRevA.51.R875
[195] Adkins, G. S.; Lymberopoulos, M., Contribution of light-by-light scattering to the orders \(O ( m \alpha^8 )\) and \(O ( m \alpha^8 \ln \alpha )\) orthopositronium decay rate, Phys. Rev. A, 51, 4, 2908-2918 (1995)
[196] Adkins, G. S.; Melnikov, K.; Yelkhovsky, A., Virtual annihilation contribution to orthopositronium decay rate, Phys. Rev. A, 60, 3306-3307 (1999), URL http://link.aps.org/doi/10.1103/PhysRevA.60.3306
[197] Adkins, G. S.; Fell, R. N.; Sapirstein, J., Light-by-light scattering contributions to positronium decay rates, Phys. Rev. A, 63, Article 032511 pp. (2001), URL http://link.aps.org/doi/10.1103/PhysRevA.63.032511
[198] Adkins, G. S.; Fell, R. N.; Sapirstein, J., Order \(\alpha^2\) corrections to the decay rate of orthopositronium, Phys. Rev. Lett., 84, 5086-5089 (2000), URL https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.84.5086
[199] Adkins, G. S.; Fell, R. N.; Sapirstein, J., Two-loop correction to the orthopositronium decay rate, Ann. Physics, 295, 2, 136-193 (2002)
[200] Hill, R. J.; Lepage, G. P., \( O ( \alpha^2 ? G a m m a , \alpha^3 ? G a m m a )\) Binding effects in orthopositronium decay, Phys. Rev. D, 62, 11 (2000), 111301(R)
[201] Melnikov, K.; Yelkhovsky, A., \( O ( \alpha^3 \ln \alpha )\) Corrections to positronium decay rates, Phys. Rev. D, 62, 11, Article 116003 pp. (2000)
[202] Jinnouchi, O.; Asai, S.; Kobayashi, T., Precision measurement of orthopositronium decay rate using sio \({}_2\) powder, Phys. Lett. B, 572, 117-126 (2003), URL http://www.sciencedirect.com/science/article/pii/S0370269303012607
[203] Vallery, R. S.; Zitzewitz, P. W.; Gidley, D. W., Resolution of the orthopositronium-lifetime puzzle, Phys. Rev. Lett., 90, Article 203402 pp. (2003), URL http://link.aps.org/doi/10.1103/PhysRevLett.90.203402
[204] Asai, S.; Jinnouchi, O.; Kobayashi, T., Solution of the orthopositronium lifetime puzzle, Internat. J. Modern Phys. A, 19, 23, 3927-3938 (2004)
[205] Adkins, G. S., Analytic evaluation of the amplitudes for orthopositronium decay to three photons to one-loop order, Phys. Rev. A, 72, Article 032501 pp. (2005), URL http://link.aps.org/doi/10.1103/PhysRevA.72.032501
[206] Kniehl, B. A.; Kotikov, A. V.; Veretin, O. L., Orthopositronium lifetime: Analytic results in \(O ( \alpha )\) and \(O ( \alpha^3 \ln \alpha )\), Phys. Rev. Lett., 101, 19, Article 193401 pp. (2008)
[207] Dirac, P. A.M., The quantum theory of the electron, Proc. R. Soc. London A: Math. Phys. Eng. Sci., 117, 778, 610-624 (1928) · JFM 54.0973.01
[208] Gordon, W., Die energieniveaus des wasserstoffatoms nach der Dirac schen quantentheorie des elektrons, Z. Phys., 48, 1-2, 11-14 (1928) · JFM 54.0973.04
[209] Foldy, L. L.; Wouthuysen, S. A., On the Dirac theory of spin 1/2 particles and its non-relativistic limit, Phys. Rev., 78, 29-36 (1950) · Zbl 0039.22605
[210] Breit, G., The effect of retardation on the interaction of two electrons, Phys. Rev., 34, 4, 553-573 (1929) · JFM 55.0527.03
[211] Darwin, C. G., The dynamical motions of charged particles, Phil. Mag., 39, 233, 537-551 (1920)
[212] Chraplyvy, Z. V., Reduction of relativistic two-particle wave equations to approximate forms. i., Phys. Rev., 91, 2, 388-391 (1953) · Zbl 0050.22201
[213] Barker, W. A.; Glover, F. N., Reduction of relativistic two-particle wave equations to approximate forms. III., Phys. Rev., 99, 1, 317-324 (1955) · Zbl 0065.21303
[214] Breit, G., The fine structure of he as a test of the spin interaction of two electrons, Phys. Rev., 36, 3, 383-397 (1930) · JFM 56.1312.02
[215] Brown, G. E.; Ravenhall, D. G., On the interaction of two electrons, Proc. R. Soc. London, Ser. A, 208, 552-559 (1951) · Zbl 0044.23209
[216] Salpeter, E. E., Mass corrections to the fine structure of hydrogen-like atoms, Phys. Rev., 87, 2, 328-343 (1952) · Zbl 0048.22501
[217] Bethe, H. A.; Salpeter, E. E., Quantum Mechanics of One- and Two-Electron Atoms (1977), Plenum: Plenum New York · Zbl 0089.21006
[218] Bechert, K.; Meixner, J., Uber die struktur die wasserstofflinien, Ann. Phys., 414, 6, 525-536 (1935) · Zbl 0011.18603
[219] Lamb, W. E., Fine structure of the hydrogen atom. III, Phys. Rev., 85, 2, 259-276 (1952)
[220] Itzykson, C.; Zuber, J.-B., Quantum Field Theory (1980), McGraw-Hill · Zbl 0453.05035
[221] Berestetskii, V. B.; Lifshitz, E. M.; Pitaevskii, L. P., (Quantum Electrodynamics. Quantum Electrodynamics, Landau and Lifshitz Course of Theoretical Physics, vol. 4 (1982), Butterworth-Heinemann: Butterworth-Heinemann Oxford)
[222] Bethe, H. A.; Salpeter, E. E., A relativistic equation for bound state problems, Phys. Rev., 82, 2, 309 (1951) · Zbl 0044.43103
[223] Schwinger, J., On the green’s functions of quantized fields. II, Proc. Natl. Acad. Sci. (USA), 37, 5, 455-459 (1951), URL http://www.jstor.org/stable/88018 · Zbl 0044.43001
[224] Kita, H., Relativistic two-body problem, Progr. Theoret. Phys., 7, 2, 217-224 (1952) · Zbl 0047.21903
[225] Hayashi, C.; Munakata, Y., On a relativistic integral equation for bound states, Progr. Theoret. Phys., 7, 5-6, 481-516 (1952) · Zbl 0048.22403
[226] Gell-Mann, M.; Low, F., Bound states in quantum field theory, Phys. Rev., 84, 2, 350-354 (1951) · Zbl 0044.23301
[227] Barbieri, R.; Remiddi, E., Solving the Bethe-Salpeter equation for positronium, Nuclear Phys. B, 141, 413-422 (1978)
[228] Nakanishi, N., A general survey of the theory of the Bethe-Salpeter equation, Suppl. Prog. Theor. Phys., 43, 1-81 (1969) · Zbl 0183.28801
[229] Allcock, G. R., Normalization of bethe-salpeter wave functions, Phys. Rev., 104, 6, 1799-1802 (1956) · Zbl 0071.42603
[230] Lurié, D.; Macfarlane, A. J.; Takahashi, Y., Normalization of Bethe-Salpeter wave functions, Phys. Rev., 140, B1091-B1099 (1965)
[231] Love, S., A study of gauge properties of the Bethe-Salpeter equation for two-fermion electromagnetic bound state systems, Ann. Physics, 113, 153-176 (1978)
[232] Cung, V. K.; Fulton, T.; Repko, W. W.; Schaum, A.; Devoto, A., Complete reduction of fermion-antifermion bethe-salpeter equation with static kernel. II, Ann. Phys. (N.Y.), 98, 2, 516-552 (1976)
[233] Woloshyn, R. M.; Jackson, A. D., Comparison of three-dimensional relativistic scattering equations, Nuclear Phys. B, 64, 269-288 (1973)
[234] Gross, F., Relativistic few-body problem. I. Two-body equations, Phys. Rev. C, 26, 5 (1982), 2303-2225
[235] Sapirstein, J. R.; Yennie, D. R., Theory of hydrogenic bound states, (Kinoshita, T., Quantum Electrodynamics. Quantum Electrodynamics, Advanced Series on Directions in High Energy Physics, vol. 7 (1990), World Scientific: World Scientific Singapore), 560-672 · Zbl 0997.81574
[236] Grotch, H.; Owen, D. A., Bound states in quantum electrodynamics: theory and applications, Found. Phys., 32, 1419-1457 (2002)
[237] Bodwin, G. T.; Yennie, D. R.; Gregorio, M. A., Recoil effects in the hyperfine structure of QED bound states, Rev. Modern Phys., 57, 3, 723-782 (1985)
[238] Gupta, S. N., Particle-particle and particle-antiparticle interactions, Nucl. Phys., 57, 19-28 (1964)
[239] Eides, M. I.; Khroplovich, I. B.; Milstein, A. I., Radiative corrections to P-levels in the two-body QED problem, Phys. Lett. B, 339, 3, 275-277 (1994)
[240] Kinoshita, T.; Lepage, G. P., Quantum electrodynamics for nonrelativistic systems and high precision determination of \(\alpha \), (Kinoshita, T., Quantum Electrodynamics. Quantum Electrodynamics, Advanced Series on Directions in High Energy Physics, vol. 7 (1990), World Scientific: World Scientific Singapore), 81-91 · Zbl 0997.81574
[241] Kinoshita, T.; Nio, M., Radiative corrections to the muonium hyperfine structure: The \(\alpha^2 ( Z \alpha )\) correction, Phys. Rev. D, 53, 9, 4909-4929 (1996)
[242] Labelle, P., Effective field theories for QED bound states: Extending nonrelativistic QED to study retardation effects, Phys. Rev. D, 58, 9, Article 093013 pp. (1998)
[243] Hill, R. J.; Lee, G.; Paz, G.; Solon, M. P., NRQED Lagrangian at order \(1 / M^4\), Phys. Rev. D, 87, 5, Article 053017 pp. (2013)
[244] Paz, G., An introduction to NRQED, Modern Phys. Lett. A, 30, 26, Article 1550128 pp. (2015) · Zbl 1320.81097
[245] Pineda, A.; Soto, J., The lamb shift in dimensional regularization, Phys. Lett. B, 420, 3-4, 391-398 (1998)
[246] Hoang, A. H., Heavy quarkonium dynamics, (Shifman, M., At the Frontier of Particle Physics/Handbook of QCD, Vol. 4 (2002), World Scientific: World Scientific Singapore), 2215-2331, arXiv:hep-ph/0204299v1, URL http://arxiv.org/abs/hep-ph/0204299 · Zbl 1043.81745
[247] Brambilla, N.; Pineda, A.; Soto, J.; Vairo, A., Effective-field theories for heavy quarkonium, Rev. Modern Phys., 77, 4, 1423-1496 (2005), URL http://link.aps.org/doi/10.1103/RevModPhys.77.1423
[248] Pineda, A., Next-to-leading-log renormalization-group running in heavy-quarkonium creation and annihilation, Phys. Rev. D, 66, Article 054022 pp. (2002)
[249] Luke, M. E.; Manohar, A. V.; Rothstein, I. Z., Renormalization group scaling in nonrelativistic QCD, Phys. Rev. D, 61, Article 074025 pp. (2000)
[250] Rothstein, I. Z., TASI lectures on effective field theories (2000), URL arXiv:hep-ph/0308266v2
[251] Petrov, A. A.; Blechman, A. E., Effective Field Theories (2016), World Scientific: World Scientific Singapore
[252] Fee, M. S.; Mills, Jr., A. P.; Chu, S.; Shaw, E. D.; Danzmann, K.; Chichester, R. J.; Zuckerman, D. M., Measurement of the positronium \(1 {}^3 \operatorname{S}_1 \to 2 {}^3 \operatorname{S}_1\) interval by continuous-wave two-photon excitation, Phys. Rev. Lett., 70, 1397-1400 (1993), URL http://link.aps.org/doi/10.1103/PhysRevLett.70.1397
[253] Cooke, D. A.; Crivelli, P.; Alnis, J.; Antognini, A.; Brown, B.; Friedreich, S.; Gabard, A.; Haensch, T.; Kirch, K.; Rubbia, A.; Vrankovic, V., Observation of positronium annihilation in the \(2 S\) state: Towards a new measurement of the \(1 S- 2 S\) transition frequency, Hyperfine Interact., 1-7 (2015)
[254] Antognini, A.; Nez, F.; Schuhmann, K.; Amaro, F. D.; Biraben, F.; Cardoso, J. M.R.; Covita, D. S.; Dax, A.; Dhawan, S.; Diepold, M.; Fernandes, L. M.P.; Giesen, A.; Gouvea, A. L.; Graf, T.; Hänsch, T. W.; Indelicato, P.; Julien, L.; Kao, C.-Y.; Knowles, P.; Kottmann, F.; Le Bigot, E.-O.; Liu, Y.-W.; Lopes, J. A.M.; Ludhova, L.; Monteiro, C. M.B.; Mulhauser, F.; Nebel, T.; Rabinowitz, P.; dos Santos, J. M.F.; Schaller, L. A.; Schwob, C.; Taqqu, D.; Veloso, J. F.C. A.; Vogelsang, J.; Pohl, R., Proton structure from the measurement of 2S-2p transition frequencies of muonic hydrogen, Science, 339, 6118, 417-420 (2013)
[255] Tiesinga, E.; Mohr, P. J.; Newell, D. B.; Taylor, B. N., CODATA recommended values of the fundamental physical constants: 2018, Rev. Modern Phys., 93, 2, Article 025010 pp. (2021)
[256] Karr, J.-P.; Marchand, D.; Voutier, E., The proton size, Nature Rev. Phys., 2, 601-614 (2020)
[257] Hughes, R. J.; Deutch, B. I., Electric charges of positronium and antiprotons, Phys. Rev. Lett., 69, 4, 578-581 (1992)
[258] Deutsch, M., Three-quantum decay of positronium, Phys. Rev., 83, 866-867 (1951), URL http://link.aps.org/doi/10.1103/PhysRev.83.866
[259] Deutsch, M.; Dulit, E., Short range interaction of electrons and fine structure of positronium, Phys. Rev., 84, 601-602 (1951), URL http://link.aps.org/doi/10.1103/PhysRev.84.601
[260] Deutsch, M.; Brown, S. C., Zeeman effect and hyperfine splitting of positronium, Phys. Rev., 85, 1047-1048 (1952), URL http://link.aps.org/doi/10.1103/PhysRev.85.1047
[261] Bearman, G.; Mills, A., Calculation of the pressure shift of the positronium hyperfine interval, Phys. Lett. A, 56, 5, 350-352 (1976), URL http://www.sciencedirect.com/science/article/pii/0375960176903686
[262] Ishida, A.; Namba, T.; Asai, S., Measurement of positronium thermalization in isobutane gas for precision measurement of ground-state hyperfine splitting, J. Phys. B: At. Mol. Opt. Phys., 49, 6, Article 064008 pp. (2016), URL http://stacks.iop.org/0953-4075/49/i=6/a=064008
[263] Cassidy, D. B.; Deng, S. H.M.; Tanaka, H. K.M.; Mills, Jr., A. P., Single shot positron annihilation lifetime spectroscopy, Appl. Phys. Lett., 88, 19, Article 194105 pp. (2006)
[264] Schultz, P. J.; Lynn, K. G., Interaction of positron beams with surfaces, thin films, and interfaces, Rev. Modern Phys., 60, 701-779 (1988)
[265] Cassidy, D. B.; Deng, S. H.M.; Greaves, R. G.; Mills, Jr., A. P., Accumulator for the production of intense positron pulses, Rev. Sci. Instrum., 77, 7, Article 073106 pp. (2006)
[266] Cassidy, D. B.; Deng, S. H.M.; Greaves, R. G.; Maruo, T.; Nishiyama, N.; Snyder, J. B.; Tanaka, H. K.M.; Mills, Jr., A. P., Experiments with a high-density positronium gas, Phys. Rev. Lett., 95, Article 195006 pp. (2005), URL http://link.aps.org/doi/10.1103/PhysRevLett.95.195006
[267] Canter, K. F.; Coleman, P. G.; Griffith, T. C.; Heyland, G. R., Measurement of total cross sections for low energy positron-helium collisions. (positron backscattering from metal surface), J. Phys. B, 5, 8, L167 (1972), URL http://stacks.iop.org/0022-3700/5/i=8/a=007
[268] Costello, D. G.; Groce, D. E.; Herring, D. F.; McGowan, J. W., Evidence for the negative work function associated with positrons in gold, Phys. Rev. B, 5, 1433-1436 (1972), URL http://link.aps.org/doi/10.1103/PhysRevB.5.1433
[269] Pendyala, S.; Zitzewitz, P.; McGowan, J.; Orth, P., Low-energy positrons from metallic moderators in a back scattering mode, Phys. Lett. A, 43, 3, 298-300 (1973), URL http://www.sciencedirect.com/science/article/pii/0375960173903149
[270] Mills, Jr., A. P., Positron solid state physics, (Brandt, W.; Dupasquier, A., Course LXXXIII “Positron Solid-State Physics” (1983), IOS Press, Proceedings of the International School of Physics ’Enrico Fermi’: IOS Press, Proceedings of the International School of Physics ’Enrico Fermi’ Amserdam), 77-187
[271] Mills, Jr., A. P.; Gullikson, E. M., Solid neon moderator for producing slow positrons, Appl. Phys. Lett., 49, 1121 (1986)
[272] Hugenschmidt, C.; Piochacz, C.; Reiner, M.; Schreckenbach, K., The NEPOMUC upgrade and advanced positron beam experiments, New J. Phys., 14, 5, Article 055027 pp. (2012), URL http://stacks.iop.org/1367-2630/14/i=5/a=055027
[273] Howell, R. H.; Alvarez, R. A.; Stanek, M., Production of slow positrons with a 100 MeV electron linac, Appl. Phys. Lett., 40, 8, 751-752 (1982), URL http://scitation.aip.org/content/aip/journal/apl/40/8/10.1063/1.93215
[274] Cassidy, D. B.; Hunt, A. W.; Asoka-Kumar, P.; Bhat, B. V.; Cowan, T. E.; Howell, R. H.; Lynn, K. G.; Mills, Jr., A. P.; Palathingal, J. C.; Golovchenko, J. A., Resonant versus nonresonant nuclear excitation of \({}^{115} \operatorname{In}\) by positron annihilation, Phys. Rev. C, 64, Article 054603 pp. (2001), URL https://link.aps.org/doi/10.1103/PhysRevC.64.054603
[275] Surko, C. M.; Leventhal, M.; Passner, A., Positron plasma in the laboratory, Phys. Rev. Lett., 62, 901-904 (1989), URL http://link.aps.org/doi/10.1103/PhysRevLett.62.901
[276] Surko, C. M.; Murphy, T. J., Positron trapping in an electrostatic well by inelastic collisions with nitrogen molecules, Phys. Rev. A, 46, 5696 (1992)
[277] Puska, M. J.; Nieminen, R. M., Theory of positrons in solids and on solid surfaces, Rev. Modern Phys., 66, 841-897 (1994), URL https://link.aps.org/doi/10.1103/RevModPhys.66.841
[278] Mills, Jr., A. P., Thermal activation measurement of positron binding energies at surfaces, Solid State Commun., 31, 9, 623-626 (1979), URL http://www.sciencedirect.com/science/article/pii/0038109879903107
[279] Mariazzi, S.; Bettotti, P.; Brusa, R. S., Positronium cooling and emission in vacuum from nanochannels at cryogenic temperature, Phys. Rev. Lett., 104, Article 243401 pp. (2010), URL http://link.aps.org/doi/10.1103/PhysRevLett.104.243401
[280] Mills, Jr., A. P.; Shaw, E. D.; Leventhal, M.; Chichester, R. J.; Zuckerman, D. M., Thermal desorption of cold positronium from oxygen-treated al(111) surfaces, Phys. Rev. B, 44, 5791-5799 (1991), URL http://link.aps.org/doi/10.1103/PhysRevB.44.5791
[281] Laricchia, G.; Armitage, S.; Kövér, A.; Murtagh, D., Ionizing collisions by positrons and positronium impact on the inert atoms, (Advances in Atomic, Molecular, and Optical Physics. Advances in Atomic, Molecular, and Optical Physics, Advances In Atomic, Molecular, and Optical Physics, vol. 56 (2008), Academic Press), 1-47
[282] Brawley, S. J.; Fayer, S. E.; Shipman, M.; Laricchia, G., Positronium production and scattering below its breakup threshold, Phys. Rev. Lett., 115, Article 223201 pp. (2015), URL http://link.aps.org/doi/10.1103/PhysRevLett.115.223201
[283] Laricchia, G.; Charlton, M.; Clark, G.; Griffith, T., Excited state positronium formation in low density gases, Phys. Lett. A, 109, 3, 97-100 (1985), URL http://www.sciencedirect.com/science/article/pii/0375960185902646
[284] Murtagh, D. J.; Cooke, D. A.; Laricchia, G., Excited-state positronium formation from helium, argon, and xenon, Phys. Rev. Lett., 102, Article 133202 pp. (2009), URL http://link.aps.org/doi/10.1103/PhysRevLett.102.133202
[285] Ramsey, N. F., Experiments with separated oscillatory fields and hydrogen masers, Rev. Modern Phys., 62, 541-552 (1990), URL https://link.aps.org/doi/10.1103/RevModPhys.62.541
[286] Held, A.; Kahana, S., Quasi-positronium in metals, Can. J. Phys., 42, 10, 1908-1913 (1964)
[287] Kanazawa, H.; Ohtsuki, Y. H.; Yanagawa, S., Positronium formation in metals, Phys. Rev., 138, A1155-A1157 (1965), URL http://link.aps.org/doi/10.1103/PhysRev.138.A1155
[288] Mills, Jr., A. P., Positronium formation at surfaces, Phys. Rev. Lett., 41, 1828-1831 (1978), URL http://link.aps.org/doi/10.1103/PhysRevLett.41.1828
[289] Mills, Jr., A. P.; Pfeiffer, L., Desorption of surface positrons: A source of free positronium at thermal velocities, Phys. Rev. Lett., 43, 1961-1964 (1979), URL http://link.aps.org/doi/10.1103/PhysRevLett.43.1961
[290] Canter, K. F.; Mills, Jr., A. P.; Berko, S., Observations of positronium lyman-\( \alpha\) radiation, Phys. Rev. Lett., 34, 177-180 (1975), URL http://link.aps.org/doi/10.1103/PhysRevLett.34.177
[291] Cassidy, D. B.; Hisakado, T. H.; Tom, H. W.K.; Mills, Jr., A. P., New mechanism for positronium formation on a silicon surface, Phys. Rev. Lett., 106, Article 133401 pp. (2011)
[292] Cassidy, D.; Hisakado, T.; Tom, H.; Mills, Jr., A. P., Positronium formation via excitonlike states on si and ge surfaces, Phys. Rev. B, 84, Article 195312 pp. (2011), URL http://link.aps.org/doi/10.1103/PhysRevB.84.195312
[293] Cassidy, D. B.; Hisakado, T. H.; Tom, H. W.K.; Mills, Jr., A. P., Photoemission of positronium from si, Phys. Rev. Lett., 107, Article 033401 pp. (2011), URL http://link.aps.org/doi/10.1103/PhysRevLett.107.033401
[294] Cassidy, D. B.; Hisakado, T. H.; Tom, H. W.K.; Mills, A. P., Excitonic positronium emission from \(n-Si(111)\), Phys. Rev. B, 86, Article 155303 pp. (2012), URL https://link.aps.org/doi/10.1103/PhysRevB.86.155303
[295] Kawasuso, A.; Maekawa, M.; Miyashita, A.; Wada, K.; Kaiwa, T.; Nagashima, Y., Positronium formation at Si surfaces, Phys. Rev. B, 97, Article 245303 pp. (2018), URL https://link.aps.org/doi/10.1103/PhysRevB.97.245303
[296] Cooper, B. S.; Alonso, A. M.; Deller, A.; Liszkay, L.; Cassidy, D. B., Positronium production in cryogenic environments, Phys. Rev. B, 93, Article 125305 pp. (2016), URL http://link.aps.org/doi/10.1103/PhysRevB.93.125305
[297] Tao, S. J., The formation of positronium in molecular substances, Appl. Phys., 10, 1, 67-79 (1976)
[298] Nagashima, Y.; Morinaka, Y.; Kurihara, T.; Nagai, Y.; Hyodo, T.; Shidara, T.; Nakahara, K., Origins of positronium emitted from \(\operatorname{SiO}_2\), Phys. Rev. B, 58, 12676-12679 (1998), URL http://link.aps.org/doi/10.1103/PhysRevB.58.12676
[299] Paulin, R.; Ambrosino, G., Annihilation libre de l’ortho-positonium formé dans certaines poudres de grande surface spécifique, J. Phys. France, 29, 4, 263-270 (1968)
[300] Sen, P.; Patro, A. P., Positron annihilation studies in oxides, Il Nuovo Cimento B (1965-1970), 64, 2, 324-336 (1969)
[301] Nagashima, Y.; Kakimoto, M.; Hyodo, T.; Fujiwara, K.; Ichimura, A.; Chang, T.; Deng, J.; Akahane, T.; Chiba, T.; Suzuki, K.; McKee, B. T.A.; Stewart, A. T., Thermalization of free positronium atoms by collisions with silica-powder grains, aerogel grains, and gas molecules, Phys. Rev. A, 52, 258-265 (1995), URL https://link.aps.org/doi/10.1103/PhysRevA.52.258
[302] Liszkay, L.; Corbel, C.; Perez, P.; Desgardin, P.; Barthe, M. F.; Ohdaira, T.; Suzuki, R.; Crivelli, P.; Gendotti, U.; Rubbia, A.; Etienne, M.; Walcarius, A., Positronium reemission yield from mesostructured silica films, Appl. Phys. Lett., 92, 6, Article 063114 pp. (2008)
[303] Liszkay, L.; Barthe, M. F.; Corbel, C.; Crivelli, P.; Desgardin, P.; Etienne, M.; Ohdaira, T.; Perez, P.; Suzuki, R.; Valtchev, V.; Walcarius, A., Orthopositronium annihilation and emission in mesostructured thin silica and silicalite-1 films, Appl. Surf. Sci., 255, 1, 187-190 (2008)
[304] Liszkay, L.; Corbel, C.; Raboin, L.; Boilot, J.-P.; Perez, P.; Brunet-Bruneau, A.; Crivelli, P.; Gendotti, U.; Rubbia, A.; Ohdaira, T.; Suzuki, R., Mesoporous silica films with varying porous volume fraction: Direct correlation between ortho-positronium annihilation decay and escape yield into vacuum, Appl. Phys. Lett., 95, 12, Article 124103 pp. (2009)
[305] Liszkay, L.; Guillemot, F.; Corbel, C.; Boilot, J.-P.; Gacoin, T.; Barthel, E.; Perez, P.; Barthe, M.-F.; Desgardin, P.; Crivelli, P.; Gendotti, U.; Rubbia, A., Positron annihilation in latex-templated macroporous silica films: pore size and ortho-positronium escape, New J. Phys., 14, 6, Article 065009 pp. (2012), URL http://stacks.iop.org/1367-2630/14/i=6/a=065009
[306] Brandt, W.; Paulin, R., Positronium diffusion in solids, Phys. Rev. Lett., 21, 193-195 (1968), URL http://link.aps.org/doi/10.1103/PhysRevLett.21.193
[307] Curry, S.; Schawlow, A., Measurements of the kinetic energy of free positronium formed in mgo, Phys. Lett. A, 37, 1, 5-6 (1971), URL http://www.sciencedirect.com/science/article/pii/0375960171903045
[308] Cassidy, D. B.; Crivelli, P.; Hisakado, T. H.; Liszkay, L.; Meligne, V. E.; Perez, P.; Tom, H. W.K.; Mills, Jr., A. P., Positronium cooling in porous silica measured via Doppler spectroscopy, Phys. Rev. A, 81, Article 012715 pp. (2010)
[309] Crivelli, P.; Gendotti, U.; Rubbia, A.; Liszkay, L.; Perez, P.; Corbel, C., Measurement of the orthopositronium confinement energy in mesoporous thin films, Phys. Rev. A, 81, Article 052703 pp. (2010)
[310] Gurung, L.; Alonso, A. M.; Babij, T. J.; Cooper, B. S.; Shluger, A. L.; Cassidy, D. B., Positronium emission from mgo smoke nanocrystals, J. Phys. B: At. Mol. Opt. Phys., 52, 10, Article 105004 pp. (2019)
[311] Rowsell, J. L.; Yaghi, O. M., Metal organic frameworks: a new class of porous materials, Microporous and Mesoporous Mater., 73, 1, 3-14 (2004), Metal-Organic Open Frameworks, URL http://www.sciencedirect.com/science/article/pii/S1387181104001295
[312] Dutta, D.; Feldblyum, J. I.; Gidley, D. W.; Imirzian, J.; Liu, M.; Matzger, A. J.; Vallery, R. S.; Wong-Foy, A. G., Evidence of positronium Bloch states in porous crystals of \(\operatorname{Zn}_4 \operatorname{O} \)-coordination polymers, Phys. Rev. Lett., 110, Article 197403 pp. (2013), URL http://link.aps.org/doi/10.1103/PhysRevLett.110.197403
[313] Crivelli, P.; Cooke, D.; Barbiellini, B.; Brown, B. L.; Feldblyum, J. I.; Guo, P.; Gidley, D. W.; Gerchow, L.; Matzger, A. J., Positronium emission spectra from self-assembled metal-organic frameworks, Phys. Rev. B, 89, Article 241103 pp. (2014), URL http://link.aps.org/doi/10.1103/PhysRevB.89.241103
[314] Jones, A. C.L.; Goldman, H. J.; Zhai, Q.; Feng, P.; Tom, H. W.K.; Mills, Jr., A. P., Monoenergetic positronium emission from metal-organic framework crystals, Phys. Rev. Lett., 114, Article 153201 pp. (2015), URL http://link.aps.org/doi/10.1103/PhysRevLett.114.153201
[315] Deller, A.; Alonso, A. M.; Cooper, B. S.; Hogan, S. D.; Cassidy, D. B., Electrostatically guided Rydberg positronium, Phys. Rev. Lett., 117, Article 073202 pp. (2016), URL http://link.aps.org/doi/10.1103/PhysRevLett.117.073202
[316] Cassidy, D. B.; Deng, S. H.M.; Mills, A. P., Evidence for positronium molecule formation at a metal surface, Phys. Rev. A, 76, Article 062511 pp. (2007), URL https://link.aps.org/doi/10.1103/PhysRevA.76.062511
[317] Cassidy, D. B.; Mills, Jr., A. P., Enhanced Ps-Ps interactions due to quantum confinement, Phys. Rev. Lett., 107, Article 213401 pp. (2011), URL http://link.aps.org/doi/10.1103/PhysRevLett.107.213401
[318] Saito, H.; Nagashima, Y.; Hyodo, T.; Chang, T., Detection of paramagnetic centers on amorphous-\( \operatorname{SiO}_2\) grain surfaces using positronium, Phys. Rev. B, 52, R689-R692 (1995), URL https://link.aps.org/doi/10.1103/PhysRevB.52.R689
[319] Saito, H.; Hyodo, T., Quenching of positronium by surface paramagnetic centers in ultraviolet- and positron-irradiated fine oxide grains, Phys. Rev. B, 60, 11070-11077 (1999), URL https://link.aps.org/doi/10.1103/PhysRevB.60.11070
[320] (Surko, C. M.; Gianturco, F. A., Cooling and Quenching of Positronium in Porous Material (2001), Springer Netherlands: Springer Netherlands Dordrecht)
[321] Cassidy, D. B.; Yokoyama, K. T.; Deng, S. H.M.; Griscom, D. L.; Miyadera, H.; Tom, H. W.K.; Varma, C. M.; Mills, Jr., A. P., Positronium as a probe of transient paramagnetic centers in \(a - \operatorname{SiO}_2\), Phys. Rev. B, 75, Article 085415 pp. (2007), URL http://link.aps.org/doi/10.1103/PhysRevB.75.085415
[322] Cassidy, D. B., Physics with many positrons, (Brusa, R. S.; Dupasquier, A.; Mills, Jr., A. P., Course CLXXIV “Physics with Many Positrons” (2010), IOS Press, Proceedings of the International School of Physics ’Enrico Fermi’: IOS Press, Proceedings of the International School of Physics ’Enrico Fermi’ Amserdam), 1-75
[323] Ziock, K. P.; Dermer, C. D.; Howell, R. H.; Magnotta, F.; Jones, K. M., Optical saturation of the \(1^3 S - 2^3 P\) transition in positronium, J. Phys. B, 23, 2, 329 (1990)
[324] Fee, M. S.; Chu, S.; Mills, Jr., A. P.; Chichester, R. J.; Zuckerman, D. M.; Shaw, E. D.; Danzmann, K., Measurement of the positronium \(1 {}^3 \operatorname{S}_1 \to 2 {}^3 \operatorname{S}_1\) interval by continuous-wave two-photon excitation, Phys. Rev. A, 48, 192-219 (1993), URL http://link.aps.org/doi/10.1103/PhysRevA.48.192
[325] Jones, A. C.L.; Piñeiro, A. M.; Roeder, E. E.; Rutbeck-Goldman, H. J.; Tom, H. W.K.; Mills, Jr., A. P., Large-area field-ionization detector for the study of Rydberg atoms, Rev. Sci. Instrum., 87, 11 (2016), URL https://www.scopus.com/inward/record.uri?eid=2-s2.0-84999264461&doi=10.1063
[326] Demtröder, W., Laser Spectroscopy (2003), Springer, New York
[327] Vigo, C.; Gerchow, L.; Radics, B.; Raaijmakers, M.; Rubbia, A.; Crivelli, P., New bounds from positronium decays on massless mirror dark photons, Phys. Rev. Lett., 124, Article 101803 pp. (2020), URL https://link.aps.org/doi/10.1103/PhysRevLett.124.101803
[328] Gurung, L.; Babij, T. J.; Hogan, S. D.; Cassidy, D. B., Precision microwave spectroscopy of the positronium \(n = 2\) fine structure, Phys. Rev. Lett., 125, Article 073002 pp. (2020), URL https://link.aps.org/doi/10.1103/PhysRevLett.125.073002
[329] Cassidy, D. B.; Hisakado, T. H.; Tom, H. W.K.; Mills, Jr., A. P., Positronium hyperfine interval measured via saturated absorption spectroscopy, Phys. Rev. Lett., 109, Article 073401 pp. (2012), URL http://link.aps.org/doi/10.1103/PhysRevLett.109.073401
[330] Mills, Jr., A. P., Line-shape effects in the measurement of the positronium hyperfine interval, Phys. Rev. A, 27, 262-267 (1983), URL http://link.aps.org/doi/10.1103/PhysRevA.27.262
[331] Ritter, M. W.; Egan, P. O.; Hughes, V. W.; Woodle, K. A., Precision determination of the hyperfine-structure interval in the ground state of positronium. V, Phys. Rev. A, 30, 1331-1338 (1984), URL http://link.aps.org/doi/10.1103/PhysRevA.30.1331
[332] Ley, R.; Hagena, D.; Weil, D.; Werth, G.; Arnold, W.; Schneider, H., Spectroscopy of excited state positronium, Hyperfine Interact., 89, 1, 327-341 (1994)
[333] Hagena, D.; Ley, R.; Weil, D.; Werth, G.; Arnold, W.; Schneider, H., Precise measurement of n=2 positronium fine-structure intervals, Phys. Rev. Lett., 71, 2887-2890 (1993), URL http://link.aps.org/doi/10.1103/PhysRevLett.71.2887
[334] Westbrook, C. I.; Gidley, D. W.; Conti, R. S.; Rich, A., New precision measurement of the orthopositronium decay rate: A discrepancy with theory, Phys. Rev. Lett., 58, 1328-1331 (1987), URL https://link.aps.org/doi/10.1103/PhysRevLett.58.1328
[335] Alonso, A. M.; Cooper, B. S.; Deller, A.; Hogan, S. D.; Cassidy, D. B., Positronium decay from \(n = 2\) states in electric and magnetic fields, Phys. Rev. A, 93, Article 012506 pp. (2016), URL http://link.aps.org/doi/10.1103/PhysRevA.93.012506
[336] Cooper, B. S.; Alonso, A. M.; Deller, A.; Wall, T. E.; Cassidy, D. B., A trap-based pulsed positron beam optimised for positronium laser spectroscopy, Rev. Sci. Instrum., 86, 10 (2015), URL http://scitation.aip.org/content/aip/journal/rsi/86/10/10.1063/1.4931690
[337] Mills, Jr., A. P.; Berko, S.; Canter, K. F., Fine-structure measurement in the first excited state of positronium, Phys. Rev. Lett., 34, 1541-1544 (1975), URL http://link.aps.org/doi/10.1103/PhysRevLett.34.1541
[338] Gurung, L.; Babij, T. J.; Pérez-Ríos, J.; Hogan, S. D.; Cassidy, D. B., Observation of asymmetric lineshapes in precision microwave spectroscopy of the positronium \(2 {}^3\) s \({}_1 \to 2 {}^3\) p \({}_J ( J = 1 , 2)\) fine structure intervals, Phys. Rev. A (2021), in press
[339] Kendall, H. W., The First Excited State of Positronium (1954), Massachusetts Institute of Technology, (Ph.D. thesis)
[340] Varghese, S.; Ensberg, E.; Hughes, V.; Lindgren, I., Evidence for formation of the first excited state of positronium, Phys. Lett. A, 49, 6, 415-417 (1974), URL http://www.sciencedirect.com/science/article/pii/0375960174902953
[341] Vasilenko, L. S.; Chebotaev, V. P.; Shishaev, A. V., Line shape of two-photon absorption in a standing-wave field in a gas, Sov. Phys. JETP Lett., 12, 113 (1970)
[342] Biraben, F.; Cagnac, B.; Grynberg, G., Experimental evidence of two-photon transition without Doppler broadening, Phys. Rev. Lett., 32, 643-645 (1974), URL http://link.aps.org/doi/10.1103/PhysRevLett.32.643
[343] Hänsch, T. W.; Lee, S. A.; Wallenstein, R.; Wieman, C., Doppler-free two-photon spectroscopy of hydrogen \(1 S - 2 S\), Phys. Rev. Lett., 34, 307-309 (1975), URL http://link.aps.org/doi/10.1103/PhysRevLett.34.307
[344] Biraben, F., Spectroscopy of atomic hydrogen, Eur. Phys. J. Spec. Top., 172, 1, 109-119 (2009)
[345] Hänsch, T. W., Nobel lecture: Passion for precision, Rev. Modern Phys., 78, 1297-1309 (2006), URL https://link.aps.org/doi/10.1103/RevModPhys.78.1297
[346] Parthey, C. G.; Matveev, A.; Alnis, J.; Bernhardt, B.; Beyer, A.; Holzwarth, R.; Maistrou, A.; Pohl, R.; Predehl, K.; Udem, T.; Wilken, T.; Kolachevsky, N.; Abgrall, M.; Rovera, D.; Salomon, C.; Laurent, P.; Hänsch, T. W., Improved measurement of the hydrogen \(1 S - 2 S\) transition frequency, Phys. Rev. Lett., 107, Article 203001 pp. (2011), URL http://link.aps.org/doi/10.1103/PhysRevLett.107.203001
[347] Chu, S.; Mills, Jr., A. P.; Hall, J. L., Measurement of the positronium \(1 {}^3 \operatorname{S}_1 \to 2 {}^3 \operatorname{S}_1\) interval by Doppler-free two-photon spectroscopy, Phys. Rev. Lett., 52, 1689-1692 (1984), URL http://link.aps.org/doi/10.1103/PhysRevLett.52.1689
[348] Fee, M. S.; Danzmann, K.; Chu, S., Optical heterodyne measurement of pulsed lasers: Toward high-precision pulsed spectroscopy, Phys. Rev. A, 45, 4911-4924 (1992), URL http://link.aps.org/doi/10.1103/PhysRevA.45.4911
[349] Danzmann, K.; Fee, M. S.; Chu, S., Doppler-free laser spectroscopy of positronium and muonium: Reanalysis of the 1 s-2 s measurements, Phys. Rev. A, 39, 6072-6073 (1989), URL http://link.aps.org/doi/10.1103/PhysRevA.39.6072
[350] Mills, Jr., A. P.; Shaw, E. D.; Chichester, R. J.; Zuckerman, D. M., Production of slow positron bunches using a microtron accelerator, Rev. Sci. Instrum., 60, 5, 825-830 (1989), URL http://scitation.aip.org/content/aip/journal/rsi/60/5/10.1063/1.1141030
[351] Fee, M. S.; Mills, Jr., A. P.; Shaw, E. D.; Chichester, R. J.; Zuckerman, D. M.; Chu, S.; Danzmann, K., Sensitive detection of Doppler-free two-photon-excited 2 s positronium by spatially separated photoionization, Phys. Rev. A, 44, R5-R8 (1991), URL http://link.aps.org/doi/10.1103/PhysRevA.44.R5
[352] Deller, A.; Edwards, D.; Mortensen, T.; Isaac, C. A.; van der Werf, D. P.; Telle, H. H.; Charlton, M., Exciting positronium with a solid-state UV laser: the Doppler-broadened lyman-alpha transition, J. Phys. B: At. Mol. Opt. Phys., 48, 17, Article 175001 pp. (2015), URL http://stacks.iop.org/0953-4075/48/i=17/a=175001
[353] Aghion, S.; Amsler, C.; Ariga, A.; Ariga, T.; Bonomi, G.; Bräunig, P.; Bremer, J.; Brusa, R. S.; Cabaret, L.; Caccia, M.; Caravita, R.; Castelli, F.; Cerchiari, G.; Chlouba, K.; Cialdi, S.; Comparat, D.; Consolati, G.; Demetrio, A.; Di Noto, L.; Doser, M.; Dudarev, A.; Ereditato, A.; Evans, C.; Ferragut, R.; Fesel, J.; Fontana, A.; Forslund, O. K.; Gerber, S.; Giammarchi, M.; Gligorova, A.; Gninenko, S.; Guatieri, F.; Haider, S.; Holmestad, H.; Huse, T.; Jernelv, I. L.; Jordan, E.; Kellerbauer, A.; Kimura, M.; Koettig, T.; Krasnicky, D.; Lagomarsino, V.; Lansonneur, P.; Lebrun, P.; Lehner, S.; Liberadzka, J.; Malbrunot, C.; Mariazzi, S.; Marx, L.; Matveev, V.; Mazzotta, Z.; Nebbia, G.; Nedelec, P.; Oberthaler, M.; Pacifico, N.; Pagano, D.; Penasa, L.; Petracek, V.; Pistillo, C.; Prelz, F.; Prevedelli, M.; Ravelli, L.; Resch, L.; Rienäcker, B.; Røhne, O. M.; Rotondi, A.; Sacerdoti, M.; Sandaker, H.; Santoro, R.; Scampoli, P.; Smestad, L.; Sorrentino, F.; Spacek, M.; Storey, J.; Strojek, I. M.; Testera, G.; Tietje, I.; Vamosi, S.; Widmann, E.; Yzombard, P.; Zmeskal, J.; Zurlo, N., Laser excitation of the \(n = 3\) level of positronium for antihydrogen production, Phys. Rev. A, 94, Article 012507 pp. (2016), URL http://link.aps.org/doi/10.1103/PhysRevA.94.012507
[354] Gallagher, T. F., Rydberg atoms, Rep. Progr. Phys., 51, 2, 143 (1988), URL http://stacks.iop.org/0034-4885/51/i=2/a=001
[355] Ziock, K. P.; Howell, R. H.; Magnotta, F.; Failor, R. A.; Jones, K. M., First observation of resonant excitation of high- n states in positronium, Phys. Rev. Lett., 64, 2366-2369 (1990), URL http://link.aps.org/doi/10.1103/PhysRevLett.64.2366
[356] Cassidy, D. B.; Hisakado, T. H.; Tom, H. W.K.; Mills, Jr., A. P., Efficient production of rydberg positronium, Phys. Rev. Lett., 108, Article 043401 pp. (2012), URL http://link.aps.org/doi/10.1103/PhysRevLett.108.043401
[357] Baker, C. J.; Edwards, D.; Isaac, C. A.; Telle, H. H.; van der Werf, D. P.; Charlton, M., Excitation of positronium: from the ground state to rydberg levels, J. Phys. B: At. Mol. Opt. Phys., 51, 3, Article 035006 pp. (2018), URL http://stacks.iop.org/0953-4075/51/i=3/a=035006
[358] Deller, A.; Alonso, A. M.; Cooper, B. S.; Hogan, S. D.; Cassidy, D. B., Measurement of Rydberg positronium fluorescence lifetimes, Phys. Rev. A, 93, Article 062513 pp. (2016), URL https://link.aps.org/doi/10.1103/PhysRevA.93.062513
[359] Jones, A. C.L.; Hisakado, T. H.; Goldman, H. J.; Tom, H. W.K.; Mills, Jr., A. P.; Cassidy, D. B., Doppler-corrected balmer spectroscopy of Rydberg positronium, Phys. Rev. A, 90, Article 012503 pp. (2014), URL http://link.aps.org/doi/10.1103/PhysRevA.90.012503
[360] Hogan, S. D., Rydberg-stark deceleration of atoms and molecules, EPJ Tech. Instrum., 3, 1 (2016)
[361] Osterwalder, A.; Merkt, F., Using high rydberg states as electric field sensors, Phys. Rev. Lett., 82, 1831-1834 (1999), URL http://link.aps.org/doi/10.1103/PhysRevLett.82.1831
[362] Beyer, A.; Alnis, J.; Khabarova, K.; Matveev, A.; Parthey, C. G.; Yost, D. C.; Pohl, R.; Udem, T.; Hänsch, T. W.; Kolachevsky, N., Precision spectroscopy of the 2S-4P transition in atomic hydrogen on a cryogenic beam of optically excited 2S atoms, Ann. Phys., 525, 8-9, 671-679 (2013)
[363] Lamb, W. E.; Retherford, R. C., Fine structure of the hydrogen atom by a microwave method, Phys. Rev., 72, 241-243 (1947), URL http://link.aps.org/doi/10.1103/PhysRev.72.241
[364] Lamb, W. E.; Retherford, R. C., Fine structure of the hydrogen atom. Part I, Phys. Rev., 79, 549-572 (1950), URL https://link.aps.org/doi/10.1103/PhysRev.79.549
[365] Furlanetto, S. R., Physical cosmology from the 21-cm line (2019), arXiv:1909.12430
[366] Gordon, J. P.; Zeiger, H. J.; Townes, C. H., The maser—New type of microwave amplifier, frequency standard, and spectrometer, Phys. Rev., 99, 1264-1274 (1955), URL https://link.aps.org/doi/10.1103/PhysRev.99.1264
[367] Miyazaki, A.; Yamazaki, T.; Suehara, T.; Namba, T.; Asai, S.; Kobayashi, T.; Saito, H.; Idehara, T.; Ogawa, I.; Tatematsu, Y., The direct spectroscopy of positronium hyperfine structure using a sub-THz gyrotron, J. Infrared, Millim. Terahertz Waves, 35, 1, 91-100 (2014)
[368] Yamazaki, T.; Miyazaki, A.; Suehara, T.; Namba, T.; Asai, S.; Kobayashi, T.; Saito, H.; Ogawa, I.; Idehara, T.; Sabchevski, S., Direct observation of the hyperfine transition of ground-state positronium, Phys. Rev. Lett., 108, Article 253401 pp. (2012), URL http://link.aps.org/doi/10.1103/PhysRevLett.108.253401
[369] Curry, S. M., Combined zeeman and motional stark effects in the first excited state of positronium, Phys. Rev. A, 7, 447-450 (1973)
[370] Dermer, C. D.; Weisheit, J. C., Perturbative analysis of simultaneous stark and zeeman effects on \(n = 1 \to n = 2\) radiative transitions in positronium, Phys. Rev. A, 40, 5526-5532 (1989)
[371] Breit, G.; Rabi, I. I., Measurement of nuclear spin, Phys. Rev., 38, 2082-2083 (1931), URL http://link.aps.org/doi/10.1103/PhysRev.38.2082.2
[372] Hughes, V. W.; Marder, S.; Wu, C. S., Hyperfine structure of positronium in its ground state, Phys. Rev., 106, 934-947 (1957), URL http://link.aps.org/doi/10.1103/PhysRev.106.934
[373] Theriot, E. D.; Beers, R. H.; Hughes, V. W., Precision redetermination of the hyperfine structure interval of positronium, Phys. Rev. Lett., 18, 767-769 (1967), URL http://link.aps.org/doi/10.1103/PhysRevLett.18.767
[374] Theriot, E. D.; Beers, R. H.; Hughes, V. W.; Ziock, K. O.H., Precision redetermination of the fine-structure interval of the ground state of positronium and a direct measurement of the decay rate of parapositronium, Phys. Rev. A, 2, 707-721 (1970), URL https://link.aps.org/doi/10.1103/PhysRevA.2.707
[375] Carlson, E. R.; Hughes, V. W.; Lewis, M. L.; Lindgren, I., Higher-precision determination of the fine-structure interval in the ground state of positronium, and the fine-structure density shift in nitrogen, Phys. Rev. Lett., 29, 1059-1061 (1972), URL https://link.aps.org/doi/10.1103/PhysRevLett.29.1059
[376] Carlson, E. R.; Hughes, V. W.; Lindgren, I., Precision determination of the fine-structure interval in the ground state of positronium. III, Phys. Rev. A, 15, 241-250 (1977), URL https://link.aps.org/doi/10.1103/PhysRevA.15.241
[377] Egan, P. O.; Hughes, V. W.; Yam, M. H., Precision determination of the fine-structure interval in the ground state of positronium. IV. Measurement of positronium fine-structure density shifts in noble gases, Phys. Rev. A, 15, 251-260 (1977), URL https://link.aps.org/doi/10.1103/PhysRevA.15.251
[378] Yam, M. H.; Egan, P. O.; Frieze, W. E.; Hughes, V. W., Positronium fine-structure interval \(\Delta \nu\) in oxide powders, Phys. Rev. A, 18, 350-353 (1978), URL https://link.aps.org/doi/10.1103/PhysRevA.18.350
[379] Mills, Jr., A. P.; Bearman, G. H., New measurement of the positronium hyperfine interval, Phys. Rev. Lett., 34, 246-250 (1975), URL http://link.aps.org/doi/10.1103/PhysRevLett.34.246
[380] Rich, A., Corrections to the measured \(n = 1\) hyperfine interval of positronium due to annihilation effects, Phys. Rev. A, 23, 2747-2750 (1981), URL http://link.aps.org/doi/10.1103/PhysRevA.23.2747
[381] Mills, Jr., A. P., Effects of collisions on the magnetic quenching of positronium, J. Chem. Phys., 62, 7, 2646-2659 (1975), URL http://scitation.aip.org/content/aip/journal/jcp/62/7/10.1063/1.430850
[382] Baryshevsky, V.; Metelitsa, O.; Tikhomirov, V.; Andrukhovich, S.; Berestov, A.; Martsinkevich, B.; Rudak, E., Observation of time oscillation in \(3 \gamma \)-annihilation of positronium in a magnetic field, Phys. Lett. A, 136, 7, 428-432 (1989), URL http://www.sciencedirect.com/science/article/pii/0375960189904283
[383] Baryshevsky, V. G.; Metelitsa, O. N.; Tikhomirov, V. V., Oscillations of the positronium decay \(\gamma \)-quantum angular distribution in a magnetic field, J. Phys. B: At. Mol. Opt. Phys., 22, 17, 2835 (1989), URL http://stacks.iop.org/0953-4075/22/i=17/a=020
[384] Fan, S.; Beling, C.; Fung, S., Hyperfine splitting in positronium measured through quantum beats in the \(3 \gamma\) decay, Phys. Lett. A, 216, 1, 129-136 (1996), URL http://www.sciencedirect.com/science/article/pii/0375960196002733
[385] Nagata, Y.; Michishio, K.; Iizuka, T.; Kikutani, H.; Chiari, L.; Tanaka, F.; Nagashima, Y., Motion-induced transition of positronium through a static periodic magnetic field in the sub-THz region, Phys. Rev. Lett., 124, Article 173202 pp. (2020), URL https://link.aps.org/doi/10.1103/PhysRevLett.124.173202
[386] Hatamian, S.; Conti, R. S.; Rich, A., Measurements of the \(2^3 S_1- 2^3 P_J ( J = 0 , 1 , 2)\) fine-structure splittings in positronium, Phys. Rev. Lett., 58, 1833-1836 (1987), URL http://link.aps.org/doi/10.1103/PhysRevLett.58.1833
[387] Conti, R. S.; Hatamian, S.; Lapidus, L.; Rich, A.; Skalsey, M., Search for C-violating, P-conserving interactions and observation of \(2{}^3\) s \({}_1\) to \(2{}^1\) p \({}_1\) transitions in positronium, Phys. Lett. A, 177, 1, 43-48 (1993)
[388] Ley, R.; Niebling, K. D.; Schwarz, R.; Werth, G., Evidence from n=2 fine structure transitions for the production of fast excited state positronium, J. Phys. B: At. Mol. Opt. Phys., 23, 11, 1915 (1990), URL http://stacks.iop.org/0953-4075/23/i=11/a=024
[389] Ley, R.; Niebling, K. D.; Werth, G.; Hahn, C.; Schneider, H.; Tobehn, I., Energy dependence of excited positronium formation at a molybdenum surface, J. Phys. B: At. Mol. Opt. Phys., 23, 19, 3437 (1990), URL http://stacks.iop.org/0953-4075/23/i=19/a=024
[390] Schoepf, D. C.; Berko, S.; Canter, K. F.; Sferlazzo, P., Observation of ps \(( n = 2)\) from well-characterized metal surfaces in ultrahigh vacuum, Phys. Rev. A, 45, 1407-1411 (1992), URL http://link.aps.org/doi/10.1103/PhysRevA.45.1407
[391] Steiger, T. D.; Conti, R. S., Formation of \(n = 2\) positronium from untreated metal surfaces, Phys. Rev. A, 45, 2744-2752 (1992), URL http://link.aps.org/doi/10.1103/PhysRevA.45.2744
[392] Day, D. J.; Charlton, M.; Laricchia, G., On the formation of excited state positronium in vacuum by positron impact on untreated surfaces, J. Phys. B: At. Mol. Opt. Phys., 34, 18, 3617 (2001), URL http://stacks.iop.org/0953-4075/34/i=18/a=301
[393] Marsman, A.; Horbatsch, M.; Hessels, E. A., Interference between two resonant transitions with distinct initial and final states connected by radiative decay, Phys. Rev. A, 96, Article 062111 pp. (2017), URL https://link.aps.org/doi/10.1103/PhysRevA.96.062111
[394] Fano, U., Effects of configuration interaction on intensities and phase shifts, Phys. Rev., 124, 1866-1878 (1961), URL https://link.aps.org/doi/10.1103/PhysRev.124.1866 · Zbl 0116.23405
[395] Stancik, A. L.; Brauns, E. B., A simple asymmetric lineshape for fitting infrared absorption spectra, Vib. Spectrosc., 47, 1, 66-69 (2008), URL http://www.sciencedirect.com/science/article/pii/S0924203108000453
[396] Akopyan, L. A.; Babij, T. J.; Lakhmanskiy, K.; Cassidy, D. B.; Matveev, A., Line-shape modeling in microwave spectroscopy of the positronium \(n = 2\) fine-structure intervals, Phys. Rev. A, 104, Article 062810 pp. (2021), URL https://link.aps.org/doi/10.1103/PhysRevA.104.062810
[397] Haghighat, M.; Zebarjad, S. M.; Loran, F., Positronium hyperfine splitting in noncommutative space at order \(\alpha^6\), Phys. Rev. D, 66, Article 016005 pp. (2002), URL http://link.aps.org/doi/10.1103/PhysRevD.66.016005
[398] Vutha, A. C.; Hessels, E. A., Frequency-offset separated oscillatory fields, Phys. Rev. A, 92, Article 052504 pp. (2015), URL https://link.aps.org/doi/10.1103/PhysRevA.92.052504
[399] Bezginov, N.; Valdez, T.; Horbatsch, M.; Marsman, A.; Vutha, A. C.; Hessels, E. A., A measurement of the atomic hydrogen lamb shift and the proton charge radius, Science, 365, 6457, 1007-1012 (2019), URL https://science.sciencemag.org/content/365/6457/1007
[400] Heiss, M.; Wichmann, G.; Rubbia, A.; Crivelli, P., The positronium hyperfine structure: Progress towards a direct measurement of the \(\text{2}^{\text{3}} \text{S}_{\text{1}} \to \text{2}^{\text{1}} \text{S}_{\text{0}}\) transition in vacuum (2018), arXiv:1805.05886
[401] Griffith, T. C.; Heyland, G. R., The mean lifetime of orthopositronium in vacuum, Nature, 269, 5624, 109-112 (1977)
[402] Alekseev, A. I., Two-photon annihilation of positronium in the P-state, Sov. Phys. JETP, 7, 826 (1958)
[403] Alekseev, A. I., Three-photon annihilation of positronium in the P-state, Sov. Phys. JETP, 9, 1312 (1959)
[404] Alonso, A. M.; Cooper, B. S.; Deller, A.; Hogan, S. D.; Cassidy, D. B., Controlling positronium annihilation with electric fields, Phys. Rev. Lett., 115, Article 183401 pp. (2015), URL http://link.aps.org/doi/10.1103/PhysRevLett.115.183401
[405] Sheldon, R. E.; Babij, T. J.; Devlin-Hill, B. A.; Gurung, L.; Cassidy, D. B., Measurement of the annihilation decay rate of \(2 {}^3 S_1\) positronium, EPL (Europhys. Lett.), 132, 1, 13001 (2020)
[406] Gidley, D. W.; Rich, A.; Sweetman, E.; West, D., New precision measurements of the decay rates of singlet and triplet positronium, Phys. Rev. Lett., 49, 525-528 (1982), URL https://link.aps.org/doi/10.1103/PhysRevLett.49.525
[407] Lynn, K. G.; Frieze, W. E.; Schultz, P. J., Measurement of the positron surface-state lifetime for Al, Phys. Rev. Lett., 52, 1137-1140 (1984), URL https://link.aps.org/doi/10.1103/PhysRevLett.52.1137
[408] Gidley, D. W.; Marko, K. A.; Rich, A., Precision measurement of the decay rate of orthopositronium in \(S i \operatorname{O}_2\) powders, Phys. Rev. Lett., 36, 395-398 (1976), URL https://link.aps.org/doi/10.1103/PhysRevLett.36.395
[409] Gidley, D. W.; Zitzewitz, P. W.; Marko, K. A.; Rich, A., Measurement of the vacuum decay rate of orthopositronium, Phys. Rev. Lett., 37, 729-732 (1976), URL http://link.aps.org/doi/10.1103/PhysRevLett.37.729
[410] Gidley, D. W.; Rich, A.; Zitzewitz, P. W.; Paul, D. A.L., New experimental value for the orthopositronium decay rate, Phys. Rev. Lett., 40, 737-740 (1978), URL http://link.aps.org/doi/10.1103/PhysRevLett.40.737
[411] Griffith, T. C.; Heyland, G. R.; Lines, K. S.; Twomey, T. R., The decay rate of ortho-positronium in vacuum, J. Phys. B: At. Mol. Phys., 11, 23, L743 (1978), URL http://stacks.iop.org/0022-3700/11/i=23/a=007
[412] Nico, J. S.; Gidley, D. W.; Rich, A.; Zitzewitz, P. W., Precision measurement of the orthopositronium decay rate using the vacuum technique, Phys. Rev. Lett., 65, 1344-1347 (1990), URL https://link.aps.org/doi/10.1103/PhysRevLett.65.1344
[413] Asai, S.; Orito, S.; Shinohara, N., New measurement of the orthopositronium decay rate, Phys. Lett. B, 357, 3, 475-480 (1995), URL http://www.sciencedirect.com/science/article/pii/0370269395009169
[414] Kataoka, Y.; Asai, S.; Kobayashi, T., First test of order \(\alpha^2\) correction of the orthopositronium decay rate, Phys. Lett. B, 671, 2, 219-223 (2009), URL http://www.sciencedirect.com/science/article/pii/S0370269308014688
[415] Moskal, P.; Alfs, D.; Bednarski, T.; Białas, P.; Czerwiński, E.; Curceanu, C.; Gajos, A.; Głowacz, B.; Gorgol, M.; Hiesmayr, B., Potential of the J-PET detector for studies of discrete symmetries in decays of positronium atom — A purely leptonic system, Acta Phys. Polon. B, 47, 2, 509 (2016)
[416] Moskal, P.; Krawczyk, N.; Hiesmayr, B. C.; Bała, M.; Curceanu, C.; Czerwiński, E.; Dulski, K.; Gajos, A.; Gorgol, M.; Del Grande, R., Feasibility studies of the polarization of photons beyond the optical wavelength regime with the J-PET detector, Eur. Phys. J. C, 78, 11 (2018)
[417] Asai, S.; Orito, S.; Yoshimura, K.; Haga, T., Search for long-lived neutral bosons in orthopositronium decay, Phys. Rev. Lett., 66, 2440-2443 (1991), URL http://link.aps.org/doi/10.1103/PhysRevLett.66.2440
[418] Asai, S.; Shigekuni, K.; Sanuki, T.; Orito, S., Search for short-lived neutral bosons in orthopositronium decay, Phys. Lett. B, 323, 1, 90-94 (1994), URL http://www.sciencedirect.com/science/article/pii/0370269394904596
[419] Maeno, T.; Fujikawa, M.; Kataoka, J.; Nishihara, Y.; Orito, S.; Shigekuni, K.; Watanabe, Y., A search for massive neutral bosons in orthopositronium decay, Phys. Lett. B, 351, 4, 574-578 (1995), URL https://www.sciencedirect.com/science/article/pii/037026939500425K
[420] Mitsui, T.; Maki, K.; Asai, S.; Ishisaki, Y.; Fujimoto, R.; Muramoto, N.; Sato, T.; Ueda, Y.; Yamazaki, Y.; Orito, S., Limit on an exotic three-body decay of orthopositronium, Europhys. Lett., 33, 2, 111 (1996), URL http://stacks.iop.org/0295-5075/33/i=2/a=111
[421] Skalsey, M.; Conti, R. S., Search for very weakly interacting, short-lived, C-odd bosons and the orthopositronium decay rate problem, Phys. Rev. A, 55, 984-987 (1997), URL http://link.aps.org/doi/10.1103/PhysRevA.55.984
[422] Pérez-Ríos, J.; Love, S. T., Searching for light dark matter through positronium decay, Eur. Phys. J. D, 72, 3, 44 (2018)
[423] Mills, Jr., A. P.; Berko, S., Search for \(C\) nonconservation in electron-positron annihilation, Phys. Rev. Lett., 18, 420-425 (1967), URL http://link.aps.org/doi/10.1103/PhysRevLett.18.420
[424] Marko, K.; Rich, A., Search for orthopositronium decay into four photons as a test of charge-conjugation invariance, Phys. Rev. Lett., 33, 980-983 (1974), URL https://link.aps.org/doi/10.1103/PhysRevLett.33.980
[425] Adachi, S.; Chiba, M.; Hirose, T.; Nagayama, S.; Nakamitsu, Y.; Sato, T.; Yamada, T., Measurement of \(\mathit{e}^+ \mathit{e}^{\operatorname{-}}\) annihilation at rest into four \(\gamma \)-rays, Phys. Rev. Lett., 65, 2634-2637 (1990), URL http://link.aps.org/doi/10.1103/PhysRevLett.65.2634
[426] Yang, J.; Chiba, M.; Hamatsu, R.; Hirose, T.; Matsumoto, T.; Yu, J., Four-photon decay of orthopositronium: A test of charge-conjugation invariance, Phys. Rev. A, 54, 1952-1956 (1996), URL https://link.aps.org/doi/10.1103/PhysRevA.54.1952
[427] Matsumoto, T.; Chiba, M.; Hamatsu, R.; Hirose, T.; Yang, J.; Yu, J., Measurement of five-photon decay in orthopositronium, Phys. Rev. A, 54, 1947-1951 (1996), URL http://link.aps.org/doi/10.1103/PhysRevA.54.1947
[428] Vetter, P. A.; Freedman, S. J., Branching-ratio measurements of multiphoton decays of positronium, Phys. Rev. A, 66, Article 052505 pp. (2002), URL http://link.aps.org/doi/10.1103/PhysRevA.66.052505
[429] Chiba, M.; Nakagawa, J.; Tsugawa, H.; Ogata, R.; Nishimura, T., A detector with high detection efficiency in 4- and 5-photon-positronium annihilations, Can. J. Phys., 80, 11, 1287-1295 (2002), http://arxiv.org/abs/DOI: 10.1139/p02-107[arXiv:DOI: 10.1139/p02-107]
[430] Lee, I.-Y., The GAMMASPHERE, Nuclear Phys. A, 520, c641-c655 (1990), Nuclear Structure in the Nineties, URL https://www.sciencedirect.com/science/article/pii/037594749091181P
[431] Bartram, C.; Henning, R.; Primosch, D., Demonstration of o-Ps detection with a cylindrical array of NaI detectors, Nucl. Instrum. Methods Phys. Res. A, 966, Article 163856 pp. (2020), URL https://www.sciencedirect.com/science/article/pii/S0168900220303624
[432] Jeong, D. W.; Khan, A.; Park, H. W.; Lee, J.; Kim, H., Optimization and characterization of detector and trigger system for a KAPAE design, Nucl. Instrum. Methods Phys. Res. A, 989, Article 164941 pp. (2021)
[433] Mitsui, T.; Fujimoto, R.; Ishisaki, Y.; Ueda, Y.; Yamazaki, Y.; Asai, S.; Orito, S., Search for invisible decay of orthopositronium, Phys. Rev. Lett., 70, 2265-2268 (1993), URL http://link.aps.org/doi/10.1103/PhysRevLett.70.2265
[434] Badertscher, A.; Crivelli, P.; Felcini, M.; Gninenko, S.; Goloubev, N.; Nãcdãclec, P.; Peigneux, J.; Postoev, V.; Rubbia, A.; Sillou, D., Search for an exotic three-body decay of orthopositronium, Phys. Lett. B, 542, 29-34 (2002), URL http://www.sciencedirect.com/science/article/pii/S0370269302022372
[435] Badertscher, A.; Crivelli, P.; Fetscher, W.; Gendotti, U.; Gninenko, S. N.; Postoev, V.; Rubbia, A.; Samoylenko, V.; Sillou, D., Improved limit on invisible decays of positronium, Phys. Rev. D, 75, Article 032004 pp. (2007), URL http://link.aps.org/doi/10.1103/PhysRevD.75.032004
[436] Kobzarev, I. Y.; Okun, L. B.; Pomeranchuk, I. Y., On the possibility of experimental observation of mirror particles, Sov. J. Nucl. Phys., 3, 6, 837-841 (1966)
[437] Okun, L. B., Mirror particles and mirror matter: 50 years of speculation and searching, Phys.-Usp., 50, 4, 380-389 (2007)
[438] Crivelli, P.; Belov, A.; Gendotti, U.; Gninenko, S.; Rubbia, A., Positronium portal into hidden sector: a new experiment to search for mirror dark matter, J. Instrum., 5, 08, P08001 (2010), URL http://stacks.iop.org/1748-0221/5/i=08/a=P08001
[439] Glashow, S., Positronium versus the mirror universe, Phys. Lett. B, 167, 1, 35-36 (1986), URL http://www.sciencedirect.com/science/article/pii/037026938690540X
[440] Foot, R.; Gninenko, S., Can the mirror world explain the ortho-positronium lifetime puzzle?, Phys. Lett. B, 480, 171-175 (2000), URL http://www.sciencedirect.com/science/article/pii/S0370269300003579
[441] Lee, T. D.; Yang, C. N., Question of parity conservation in weak interactions, Phys. Rev., 104, 254-258 (1956), URL http://link.aps.org/doi/10.1103/PhysRev.104.254
[442] Garwin, R. L.; Lederman, L. M.; Weinrich, M., Observations of the failure of conservation of parity and charge conjugation in meson decays: the magnetic moment of the free muon, Phys. Rev., 105, 1415-1417 (1957), URL https://link.aps.org/doi/10.1103/PhysRev.105.1415
[443] Wu, C. S.; Ambler, E.; Hayward, R. W.; Hoppes, D. D.; Hudson, R. P., Experimental test of parity conservation in beta decay, Phys. Rev., 105, 1413-1415 (1957), URL http://link.aps.org/doi/10.1103/PhysRev.105.1413
[444] Christenson, J. H.; Cronin, J. W.; Fitch, V. L.; Turlay, R., Evidence for the \(2 \pi\) decay of the \(K_2^0\) meson, Phys. Rev. Lett., 13, 138-140 (1964), URL https://link.aps.org/doi/10.1103/PhysRevLett.13.138
[445] Bell, J. S.; Peierls, R. E., Time reversal in field theory, Proc. R. Soc. London Ser. A Math. Phys. Sci., 231, 1187, 479-495 (1955), arXiv:https://royalsocietypublishing.org/doi/pdf/10.1098/rspa.1955.0189, URL https://royalsocietypublishing.org/doi/abs/10.1098/rspa.1955.0189
[446] Peccei, R. D.; Quinn, H. R., \( \operatorname{CP}\) Conservation in the presence of pseudoparticles, Phys. Rev. Lett., 38, 1440-1443 (1977), URL https://link.aps.org/doi/10.1103/PhysRevLett.38.1440
[447] Dine, M.; Kusenko, A., Origin of the matter-antimatter asymmetry, Rev. Modern Phys., 76, 1-30 (2003), URL https://link.aps.org/doi/10.1103/RevModPhys.76.1
[448] Ibrahim, T.; Nath, P., \( \mathit{CP}\) Violation from the standard model to strings, Rev. Modern Phys., 80, 577-631 (2008), URL https://link.aps.org/doi/10.1103/RevModPhys.80.577
[449] Pilaftsis, A., \( \operatorname{CP}\) Violation and baryogenesis due to heavy majorana neutrinos, Phys. Rev. D, 56, 5431-5451 (1997), URL https://link.aps.org/doi/10.1103/PhysRevD.56.5431
[450] Adkins, G. S.; Droz, D. R.; Rastawicki, D.; Fell, R. N., Orthopositronium decay form factors and two-photon correlations, Phys. Rev. A, 81, Article 042507 pp. (2010), URL https://link.aps.org/doi/10.1103/PhysRevA.81.042507
[451] Andrukhovich, S. K.; Antovich, N.; Berestov, A. V.; Vukotich, P.; Gurinovich, A. A.; Metelitsa, O. N.; Khrushchinskii, A. A., A method for selecting three-photon positronium-annihilation events with a multidetector coincidence spectrometer, Instrum. Exp. Tech., 43, 3, 295-299 (2000)
[452] Vetter, P. A.; Freedman, S. J., Search for \(C P T\)-odd decays of positronium, Phys. Rev. Lett., 91, Article 263401 pp. (2003), URL http://link.aps.org/doi/10.1103/PhysRevLett.91.263401
[453] Skalsey, M.; Van House, J., First test of CP invariance in the decay of positronium, Phys. Rev. Lett., 67, 1993-1996 (1991), URL http://link.aps.org/doi/10.1103/PhysRevLett.67.1993
[454] Yamazaki, T.; Namba, T.; Asai, S.; Kobayashi, T., Search for \(C P\) violation in positronium decay, Phys. Rev. Lett., 104, Article 083401 pp. (2010), URL http://link.aps.org/doi/10.1103/PhysRevLett.104.083401
[455] Arbic, B. K.; Hatamian, S.; Skalsey, M.; Van House, J.; Zheng, W., Angular-correlation test of CPT in polarized positronium, Phys. Rev. A, 37, 3189-3194 (1988), URL http://link.aps.org/doi/10.1103/PhysRevA.37.3189
[456] Adkins, G., Search for CP and CPT violation in positronium decay, CPT Lorentz Symmetry (2010)
[457] Yamazaki, T.; Namba, T.; Asai, S.; Kobayashi, T., Erratum: Search for \(C P\) violation in positronium decay [Phys. Rev. Lett. 104, 083401 (2010)],, Phys. Rev. Lett., 120, Article 239902 pp. (2018), URL https://link.aps.org/doi/10.1103/PhysRevLett.120.239902
[458] Donoghue, J.; Golowich, E.; Holstein, B. R., Dynamics of the Standard Model, Vol. 2 (2014), CUP · Zbl 1317.81003
[459] Cottingham, W.; Greenwood, D., An Introduction to the Standard Model of Particle Physics (2007), Cambridge University Press · Zbl 1126.81002
[460] Schwartz, M. D., Quantum Field Theory and the Standard Model (2014), Cambridge University Press
[461] Englert, F.; Brout, R., Broken symmetry and the mass of gauge vector mesons, Phys. Rev. Lett., 13, 321-323 (1964), URL https://link.aps.org/doi/10.1103/PhysRevLett.13.321
[462] Higgs, P. W., Broken symmetries and the masses of gauge bosons, Phys. Rev. Lett., 13, 508-509 (1964), URL https://link.aps.org/doi/10.1103/PhysRevLett.13.508
[463] Haba, N.; Ishida, H.; Takahashi, R.; Yamaguchi, Y., Hierarchy problem, gauge coupling unification at the Planck scale, and vacuum stability, Nuclear Phys. B, 900, 244-258 (2015), URL http://www.sciencedirect.com/science/article/pii/S0550321315003120 · Zbl 1331.81369
[464] Froggatt, C.; Nielsen, H., Standard model criticality prediction top mass \(173 \pm 5\) GeV and Higgs mass \(135 \pm 9\) GeV, Phys. Lett. B, 368, 1, 96-102 (1996), URL http://www.sciencedirect.com/science/article/pii/0370269395014802
[465] Masina, I., The Higgs boson and top quark masses as tests of electroweak vacuum stability, Nuclear Phys. B Proc. Suppl., 237-238, 323-325 (2013), Proceedings of the Neutrino Oscillation Workshop, URL http://www.sciencedirect.com/science/article/pii/S0920563213002387
[466] Fukuda, Y.; Hayakawa, T.; Ichihara, E.; Inoue, K.; Ishihara, K.; Ishino, H.; Itow, Y.; Kajita, T.; Kameda, J.; Kasuga, S.; Kobayashi, K.; Kobayashi, Y.; Koshio, Y.; Miura, M.; Nakahata, M.; Nakayama, S.; Okada, A.; Okumura, K.; Sakurai, N.; Shiozawa, M.; Suzuki, Y.; Takeuchi, Y.; Totsuka, Y.; Yamada, S.; Earl, M.; Habig, A.; Kearns, E.; Messier, M. D.; Scholberg, K.; Stone, J. L.; Sulak, L. R.; Walter, C. W.; Goldhaber, M.; Barszczxak, T.; Casper, D.; Gajewski, W.; Halverson, P. G.; Hsu, J.; Kropp, W. R.; Price, L. R.; Reines, F.; Smy, M.; Sobel, H. W.; Vagins, M. R.; Ganezer, K. S.; Keig, W. E.; Ellsworth, R. W.; Tasaka, S.; Flanagan, J. W.; Kibayashi, A.; Learned, J. G.; Matsuno, S.; Stenger, V. J.; Takemori, D.; Ishii, T.; Kanzaki, J.; Kobayashi, T.; Mine, S.; Nakamura, K.; Nishikawa, K.; Oyama, Y.; Sakai, A.; Sakuda, M.; Sasaki, O.; Echigo, S.; Kohama, M.; Suzuki, A. T.; Haines, T. J.; Blaufuss, E.; Kim, B. K.; Sanford, R.; Svoboda, R.; Chen, M. L.; Conner, Z.; Goodman, J. A.; Sullivan, G. W.; Hill, J.; Jung, C. K.; Martens, K.; Mauger, C.; McGrew, C.; Sharkey, E.; Viren, B.; Yanagisawa, C.; Doki, W.; Miyano, K.; Okazawa, H.; Saji, C.; Takahata, M.; Nagashima, Y.; Takita, M.; Yamaguchi, T.; Yoshida, M.; Kim, S. B.; Etoh, M.; Fujita, K.; Hasegawa, A.; Hasegawa, T.; Hatakeyama, S.; Iwamoto, T.; Koga, M.; Maruyama, T.; Ogawa, H.; Shirai, J.; Suzuki, A.; Tsushima, F.; Koshiba, M.; Nemoto, M.; Nishijima, K.; Futagami, T.; Hayato, Y.; Kanaya, Y.; Kaneyuki, K.; Watanabe, Y.; Kielczewska, D.; Doyle, R. A.; George, J. S.; Stachyra, A. L.; Wai, L. L.; Wilkes, R. J.; Young, K. K., Evidence for oscillation of atmospheric neutrinos, Phys. Rev. Lett., 81, 1562-1567 (1998), URL https://link.aps.org/doi/10.1103/PhysRevLett.81.1562
[467] Peccei, R. D.; Quinn, H. R., Constraints imposed by \(\operatorname{CP}\) conservation in the presence of pseudoparticles, Phys. Rev. D, 16, 1791-1797 (1977), URL https://link.aps.org/doi/10.1103/PhysRevD.16.1791
[468] Bahcall, N. A.; Ostriker, J. P.; Perlmutter, S.; Steinhardt, P. J., The cosmic triangle: Revealing the state of the universe, Science, 284, 5419, 1481-1488 (1999), arXiv:https://science.sciencemag.org/content/284/5419/1481.full.pdf, URL https://science.sciencemag.org/content/284/5419/1481
[469] Planck Collaboration, N. A.; Aghanim, N.; Akrami, Y.; Arroja, F.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Basak, S.; Battye, R.; Benabed, K.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Bond, J. R., Planck 2018 results. I. Overview and the cosmological legacy of Planck, Astron. Astrophys. (2019)
[470] Collaboration, P., Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys. (2020)
[471] Essig, R.; Mardon, J.; Volansky, T., Direct detection of sub-GeV dark matter, Phys. Rev. D, 85, Article 076007 pp. (2012), URL https://link.aps.org/doi/10.1103/PhysRevD.85.076007
[472] Va’vra, J., Molecular excitations: A new way to detect dark matter, Phys. Lett. B, 736, 169-173 (2014), URL http://www.sciencedirect.com/science/article/pii/S0370269314005255
[473] Arvanitaki, A.; Dimopoulos, S.; Van Tilburg, K., Resonant absorption of bosonic dark matter in molecules, Phys. Rev. X, 8, Article 041001 pp. (2018), URL https://link.aps.org/doi/10.1103/PhysRevX.8.041001
[474] Essig, R.; Pérez-Ríos, J.; Ramani, H.; Slone, O., Direct detection of nuclear scattering of sub-GeV dark matter using molecular excitations, Phys. Rev. Res., 1, Article 033105 pp. (2019), URL https://link.aps.org/doi/10.1103/PhysRevResearch.1.033105
[475] Sakharov, A. D., Violation of CP invariance, C asymmetry, and baryon asymmetry of the universe, Sov. Phys. Uspekhi, 34, 5, 392-393 (1991)
[476] Hudson, J. J.; Kara, D. M.; Smallman, I. J.; Sauer, B. E.; Tarbutt, M. R.; Hinds, E. A., Improved measurement of the shape of the electron, Nature, 473, 7348, 493-496 (2011)
[477] Baron, J.; Campbell, W. C.; DeMille, D.; Doyle, J. M.; Gabrielse, G.; Gurevich, Y. V.; Hess, P. W.; Hutzler, N. R.; Kirilov, E.; Kozyryev, I.; O’Leary, B. R.; Panda, C. D.; Parsons, M. F.; Petrik, E. S.; Spaun, B.; Vutha, A. C.; West, A. D., Order of magnitude smaller limit on the electric dipole moment of the electron, Science, 343, 6168, 269-272 (2014), URL http://science.sciencemag.org/content/343/6168/269
[478] Arkani-Hamed, N.; Dimopoulos, S.; Dvali, G., The hierarchy problem and new dimensions at a millimeter, Phys. Lett. B, 429, 3, 263-272 (1998), URL http://www.sciencedirect.com/science/article/pii/S0370269398004663 · Zbl 1355.81103
[479] Borkowski, M.; Buchachenko, A. A.; Ciuryło, R.; Julienne, P. S.; Yamada, H.; Yuu, K.; Takahashi, K.; Takasu, Y.; Takahashi, Y., Probing non-Newtonian gravity by photoassociation spectroscopy, J. Phys. Conf. Ser., 810, Article 012014 pp. (2017)
[480] Gato-Rivera, B., Constraining extra space dimensions using precision molecular spectroscopy, J. Phys. Conf. Ser., 626, Article 012052 pp. (2015)
[481] Biesheuvel, J.; Karr, J. P.; Hilico, L.; Eikema, K. S.E.; Ubachs, W.; Koelemeij, J. C.J., Probing QED and fundamental constants through laser spectroscopy of vibrational transitions in HD+, Nature Commun., 7, 1, 10385 (2016)
[482] Ubachs, W.; Koelemeij, J.; Eikema, K.; Salumbides, E., Physics beyond the standard model from hydrogen spectroscopy, J. Mol. Spectrosc., 320, 1-12 (2016), URL http://www.sciencedirect.com/science/article/pii/S0022285215300217
[483] Pérez-Ríos, J., An Introduction to Cold and Ultracold Chemistry (2020), Springer International Publishing, URL https://www.ebook.de/de/product/39345358/jesus_perez_rios_an_introduction_to_cold_and_ultracold_chemistry.html
[484] Reinhold, E.; Buning, R.; Hollenstein, U.; Ivanchik, A.; Petitjean, P.; Ubachs, W., Indication of a cosmological variation of the proton-electron mass ratio based on laboratory measurement and reanalysis of \(\operatorname{H}_2\) spectra, Phys. Rev. Lett., 96, Article 151101 pp. (2006), URL https://link.aps.org/doi/10.1103/PhysRevLett.96.151101
[485] Flambaum, V. V.; Kozlov, M. G., Limit on the cosmological variation of \(m_p / m_e\) from the inversion spectrum of ammonia, Phys. Rev. Lett., 98, Article 240801 pp. (2007), URL https://link.aps.org/doi/10.1103/PhysRevLett.98.240801
[486] DeMille, D.; Sainis, S.; Sage, J.; Bergeman, T.; Kotochigova, S.; Tiesinga, E., Enhanced sensitivity to variation of \(m_e / m_p\) in molecular spectra, Phys. Rev. Lett., 100, Article 043202 pp. (2008), URL https://link.aps.org/doi/10.1103/PhysRevLett.100.043202
[487] Hudson, E. R.; Lewandowski, H. J.; Sawyer, B. C.; Ye, J., Cold molecule spectroscopy for constraining the evolution of the fine structure constant, Phys. Rev. Lett., 96, Article 143004 pp. (2006), URL https://link.aps.org/doi/10.1103/PhysRevLett.96.143004
[488] Salumbides, E.; Ubachs, W.; Korobov, V., Bounds on fifth forces at the sub-å length scale, J. Mol. Spectrosc., 300, 65-69 (2014), Spectroscopic Tests of Fundamental Physics, URL http://www.sciencedirect.com/science/article/pii/S0022285214000885
[489] Ubachs, W.; Vassen, W.; Salumbides, E. J.; Eikema, K. S.E., Precision metrology on the hydrogen atom in search for new physics, Ann. Phys., 525, 7, A113-A115 (2013), arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/andp.201300730, URL https://onlinelibrary.wiley.com/doi/abs/10.1002/andp.201300730
[490] Essig, R.; Mardon, J.; Slone, O.; Volansky, T., Detection of sub-GeV dark matter and solar neutrinos via chemical-bond breaking, Phys. Rev. D, 95, Article 056011 pp. (2017), URL https://link.aps.org/doi/10.1103/PhysRevD.95.056011
[491] Essig, R.; Schuster, P.; Toro, N., Probing dark forces and light hidden sectors at low-energy \(e^+ e^-\) colliders, Phys. Rev. D, 80, Article 015003 pp. (2009), URL https://link.aps.org/doi/10.1103/PhysRevD.80.015003
[492] Feng, J. L., Dark matter candidates from particle physics and methods of detection, Ann. Rev. Astron. Astrophys., 48, 495-545 (2010), arXiv:1003.0904
[493] Alexander, J., Dark sectors 2016 workshop: Community report (2016), arXiv:1608.08632
[494] Feng, J. L.; Kaplinghat, M.; Tu, H.; Yu, H.-B., Hidden charged dark matter, J. Cosmol. Astropart. Phys., 07, 004 (2009), arXiv:0905.3039
[495] Hambye, T., Hidden vector dark matter, J. High Energy Phys., 01, 028 (2009), arXiv:0811.0172
[496] Englert, C.; Plehn, T.; Zerwas, D.; Zerwas, P. M., Exploring the Higgs portal, Phys. Lett. B, 703, 298-305 (2011), arXiv:1106.3097
[497] Flacke, T.; Frugiuele, C.; Fuchs, E.; Gupta, R. S.; Perez, G., Phenomenology of relaxion-higgs mixing, J. High Energy Phys., 06, 050 (2017), arXiv:1610.02025
[498] Dobrescu, B. A.; Frugiuele, C., Hidden gev-scale interactions of quarks, Phys. Rev. Lett., 113, Article 061801 pp. (2014), arXiv:1404.3947
[499] Costantino, A.; Fichet, S.; Tanedo, P., Exotic spin-dependent forces from a hidden sector, J. High Energy Phys., 03, 148 (2020), arXiv:1910.02972
[500] Dienes, K. R.; Kolda, C.; March-Russell, J., Kinetic mixing and the supersymmetric gauge hierarchy, Nuclear Phys. B, 492, 1, 104-118 (1997), URL http://www.sciencedirect.com/science/article/pii/S0550321397800284
[501] Holdom, B., Two \(U ( 1 )\)’s and \(\varepsilon\) charge shifts, Phys. Lett. B, 166, 2, 196-198 (1986), URL http://www.sciencedirect.com/science/article/pii/0370269386913778
[502] Wojtsekhowski, B.; Baranov, G.; Blinov, M.; Levichev, E.; Mishnev, S.; Nikolenko, D.; Rachek, I.; Shestakov, Y.; Tikhonov, Y.; Toporkov, D.; Alexander, J.; Battaglieri, M.; Celentano, A.; Vita, R. D.; Marsicano, L.; Bondì, M.; Napoli, M. D.; Italiano, A.; Leonora, E.; Randazzo, N., Searching for a dark photon: project of the experiment at VEPP-3, J. Instrum., 13, 02, P02021 (2018)
[503] Adrian, P. H.; Baltzell, N. A.; Battaglieri, M.; Bondí, M.; Boyarinov, S.; Bueltmann, S.; Burkert, V. D.; Calvo, D.; Carpinelli, M.; Celentano, A.; Charles, G.; Colaneri, L.; Cooper, W.; Cuevas, C.; D’Angelo, A.; Dashyan, N.; De Napoli, M.; De Vita, R.; Deur, A.; Dupre, R.; Egiyan, H.; Elouadrhiri, L.; Essig, R.; Fadeyev, V.; Field, C.; Filippi, A.; Freyberger, A.; Garçon, M.; Gevorgyan, N.; Girod, F. X.; Graf, N.; Graham, M.; Griffioen, K. A.; Grillo, A.; Guidal, M.; Herbst, R.; Holtrop, M.; Jaros, J.; Kalicy, G.; Khandaker, M.; Kubarovsky, V.; Leonora, E.; Livingston, K.; Maruyama, T.; McCarty, K.; McCormick, J.; McKinnon, B.; Moffeit, K.; Moreno, O.; Munoz Camacho, C.; Nelson, T.; Niccolai, S.; Odian, A.; Oriunno, M.; Osipenko, M.; Paremuzyan, R.; Paul, S.; Randazzo, N.; Raydo, B.; Reese, B.; Rizzo, A.; Schuster, P.; Sharabian, Y. G.; Simi, G.; Simonyan, A.; Sipala, V.; Sokhan, D.; Solt, M.; Stepanyan, S.; Szumila-Vance, H.; Toro, N.; Uemura, S.; Ungaro, M.; Voskanyan, H.; Weinstein, L. B.; Wojtsekhowski, B.; Yale, B., Search for a dark photon in electroproduced \(e^+ e^-\) pairs with the heavy photon search experiment at jlab, Phys. Rev. D, 98, Article 091101 pp. (2018), URL https://link.aps.org/doi/10.1103/PhysRevD.98.091101
[504] Lees, J. P.; Poireau, V.; Tisserand, V.; Grauges, E.; Palano, A.; Eigen, G.; Stugu, B.; Brown, D. N.; Feng, M.; Kerth, L. T.; Kolomensky, Y. G.; Lee, M. J.; Lynch, G.; Koch, H.; Schroeder, T.; Hearty, C.; Mattison, T. S.; McKenna, J. A.; So, R. Y.; Khan, A.; Blinov, V. E.; Buzykaev, A. R.; Druzhinin, V. P.; Golubev, V. B.; Kravchenko, E. A.; Onuchin, A. P.; Serednyakov, S. I.; Skovpen, Y. I.; Solodov, E. P.; Todyshev, K. Y.; Lankford, A. J.; Mandelkern, M.; Dey, B.; Gary, J. W.; Long, O.; Campagnari, C.; Franco Sevilla, M.; Hong, T. M.; Kovalskyi, D.; Richman, J. D.; West, C. A.; Eisner, A. M.; Lockman, W. S.; Panduro Vazquez, W.; Schumm, B. A.; Seiden, A.; Chao, D. S.; Cheng, C. H.; Echenard, B.; Flood, K. T.; Hitlin, D. G.; Miyashita, T. S.; Ongmongkolkul, P.; Porter, F. C.; Andreassen, R.; Huard, Z.; Meadows, B. T.; Pushpawela, B. G.; Sokoloff, M. D.; Sun, L.; Bloom, P. C.; Ford, W. T.; Gaz, A.; Smith, J. G.; Wagner, S. R.; Ayad, R.; Toki, W. H.; Spaan, B.; Bernard, D.; Verderi, M.; Playfer, S.; Bettoni, D.; Bozzi, C.; Calabrese, R.; Cibinetto, G.; Fioravanti, E.; Garzia, I.; Luppi, E.; Piemontese, L.; Santoro, V.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Martellotti, S.; Patteri, P.; Peruzzi, I. M.; Piccolo, M.; Rama, M.; Zallo, A.; Contri, R.; Lo Vetere, M.; Monge, M. R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Bhuyan, B.; Prasad, V.; Adametz, A.; Uwer, U.; Lacker, H. M.; Dauncey, P. D.; Mallik, U.; Chen, C.; Cochran, J.; Prell, S.; Ahmed, H.; Gritsan, A. V.; Arnaud, N.; Davier, M.; Derkach, D.; Grosdidier, G.; Le Diberder, F.; Lutz, A. M.; Malaescu, B.; Roudeau, P.; Stocchi, A.; Wormser, G.; Lange, D. J.; Wright, D. M.; Coleman, J. P.; Fry, J. R.; Gabathuler, E.; Hutchcroft, D. E.; Payne, D. J.; Touramanis, C.; Bevan, A. J.; Di Lodovico, F.; Sacco, R.; Cowan, G.; Bougher, J.; Brown, D. N.; Davis, C. L.; Denig, A. G.; Fritsch, M.; Gradl, W.; Griessinger, K.; Hafner, A.; Schubert, K. R.; Barlow, R. J.; Lafferty, G. D.; Cenci, R.; Hamilton, B.; Jawahery, A.; Roberts, D. A.; Cowan, R.; Sciolla, G.; Cheaib, R.; Patel, P. M.; Robertson, S. H.; Neri, N.; Palombo, F.; Cremaldi, L.; Godang, R.; Sonnek, P.; Summers, D. J.; Simard, M.; Taras, P.; De Nardo, G.; Onorato, G.; Sciacca, C.; Martinelli, M.; Raven, G.; Jessop, C. P.; LoSecco, J. M.; Honscheid, K.; Kass, R.; Feltresi, E.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simi, G.; Simonetto, F.; Stroili, R.; Akar, S.; Ben-Haim, E.; Bomben, M.; Bonneaud, G. R.; Briand, H.; Calderini, G.; Chauveau, J.; Leruste, P.; Marchiori, G.; Ocariz, J.; Biasini, M.; Manoni, E.; Pacetti, S.; Rossi, A.; Angelini, C.; Batignani, G.; Bettarini, S.; Carpinelli, M.; Casarosa, G.; Cervelli, A.; Chrzaszcz, M.; Forti, F.; Giorgi, M. A.; Lusiani, A.; Oberhof, B.; Paoloni, E.; Perez, A.; Rizzo, G.; Walsh, J. J.; Lopes Pegna, D.; Olsen, J.; Smith, A. J.S.; Faccini, R.; Ferrarotto, F.; Ferroni, F.; Gaspero, M.; Li Gioi, L.; Pilloni, A.; Piredda, G.; Bünger, C.; Dittrich, S.; Grünberg, O.; Hartmann, T.; Hess, M.; Leddig, T.; Voß, C.; Waldi, R.; Adye, T.; Olaiya, E. O.; Wilson, F. F.; Emery, S.; Vasseur, G.; Anulli, F.; Aston, D.; Bard, D. J.; Cartaro, C.; Convery, M. R.; Dorfan, J.; Dubois-Felsmann, G. P.; Dunwoodie, W.; Ebert, M.; Field, R. C.; Fulsom, B. G.; Graham, M. T.; Hast, C.; Innes, W. R.; Kim, P.; Leith, D. W.G. S.; Lewis, P.; Lindemann, D.; Luitz, S.; Luth, V.; Lynch, H. L.; MacFarlane, D. B.; Muller, D. R.; Neal, H.; Perl, M.; Pulliam, T.; Ratcliff, B. N.; Roodman, A.; Salnikov, A. A.; Schindler, R. H.; Snyder, A.; Su, D.; Sullivan, M. K.; Va’vra, J.; Wisniewski, W. J.; Wulsin, H. W.; Purohit, M. V.; White, R. M.; Wilson, J. R.; Randle-Conde, A.; Sekula, S. J.; Bellis, M.; Burchat, P. R.; Puccio, E. M.T.; Alam, M. S.; Ernst, J. A.; Gorodeisky, R.; Guttman, N.; Peimer, D. R.; Soffer, A.; Spanier, S. M.; Ritchie, J. L.; Ruland, A. M.; Schwitters, R. F.; Wray, B. C.; Izen, J. M.; Lou, X. C.; Bianchi, F.; De Mori, F.; Filippi, A.; Gamba, D.; Lanceri, L.; Vitale, L.; Martinez-Vidal, F.; Oyanguren, A.; Villanueva-Perez, P.; Albert, J.; Banerjee, S.; Beaulieu, A.; Bernlochner, F. U.; Choi, H. H.F.; King, G. J.; Kowalewski, R.; Lewczuk, M. J.; Lueck, T.; Nugent, I. M.; Roney, J. M.; Sobie, R. J.; Tasneem, N.; Gershon, T. J.; Harrison, P. F.; Latham, T. E.; Band, H. R.; Dasu, S.; Pan, Y.; Prepost, R.; Wu, S. L., Search for a dark photon in \(e^+ e^-\) collisions at babar, Phys. Rev. Lett., 113, Article 201801 pp. (2014), URL https://link.aps.org/doi/10.1103/PhysRevLett.113.201801
[505] Bilmiş, S.; Turan, I.; Aliev, T. M.; Deniz, M.; Singh, L.; Wong, H. T., Constraints on dark photon from neutrino-electron scattering experiments, Phys. Rev. D, 92, Article 033009 pp. (2015), URL https://link.aps.org/doi/10.1103/PhysRevD.92.033009
[506] Yin, P.-F.; Zhu, S.-H., Light dark sector searches at low-energy high-luminosity e \({}^+\) e \({}^-\) colliders, Front. Phys., 11, 5, Article 111403 pp. (2016)
[507] Lin, T., TASI lectures on dark matter models and direct detection (2019), arXiv:1904.07915
[508] Bjorken, J. D.; Essig, R.; Schuster, P.; Toro, N., New fixed-target experiments to search for dark gauge forces, Phys. Rev. D, 80, Article 075018 pp. (2009), URL https://link.aps.org/doi/10.1103/PhysRevD.80.075018
[509] Pospelov, M., Secluded U(1) below the weak scale, Phys. Rev. D, 80, Article 095002 pp. (2009), URL https://link.aps.org/doi/10.1103/PhysRevD.80.095002
[510] Banerjee, D.; Burtsev, V.; Cooke, D.; Crivelli, P.; Depero, E.; Dermenev, A. V.; Donskov, S. V.; Dubinin, F.; Dusaev, R. R.; Emmenegger, S.; Fabich, A.; Frolov, V. N.; Gardikiotis, A.; Gninenko, S. N.; Hösgen, M.; Kachanov, V. A.; Karneyeu, A. E.; Ketzer, B.; Kirpichnikov, D. V.; Kirsanov, M. M.; Kovalenko, S. G.; Kramarenko, V. A.; Kravchuk, L. V.; Krasnikov, N. V.; Kuleshov, S. V.; Lyubovitskij, V. E.; Lysan, V.; Matveev, V. A.; Mikhailov, Y. V.; Myalkovskiy, V. V.; Peshekhonov, V. D.; Peshekhonov, D. V.; Petuhov, O.; Polyakov, V. A.; Radics, B.; Rubbia, A.; Samoylenko, V. D.; Tikhomirov, V. O.; Tlisov, D. A.; Toropin, A. N.; Trifonov, A. Y.; Vasilishin, B.; Vasquez Arenas, G.; Ulloa, P.; Zhukov, K.; Zioutas, K., Search for invisible decays of sub-GeV dark photons in missing-energy events at the CERN SPS, Phys. Rev. Lett., 118, Article 011802 pp. (2017), URL https://link.aps.org/doi/10.1103/PhysRevLett.118.011802
[511] Banerjee, D.; Burtsev, V. E.; Chumakov, A. G.; Cooke, D.; Crivelli, P.; Depero, E.; Dermenev, A. V.; Donskov, S. V.; Dubinin, F.; Dusaev, R. R.; Emmenegger, S.; Fabich, A.; Frolov, V. N.; Gardikiotis, A.; Gerassimov, S. G.; Gninenko, S. N.; Hösgen, M.; Karneyeu, A. E.; Ketzer, B.; Kirpichnikov, D. V.; Kirsanov, M. M.; Konorov, I. V.; Kovalenko, S. G.; Kramarenko, V. A.; Kravchuk, L. V.; Krasnikov, N. V.; Kuleshov, S. V.; Lyubovitskij, V. E.; Lysan, V.; Matveev, V. A.; Mikhailov, Y. V.; Peshekhonov, D. V.; Polyakov, V. A.; Radics, B.; Rojas, R.; Rubbia, A.; Samoylenko, V. D.; Tikhomirov, V. O.; Tlisov, D. A.; Toropin, A. N.; Trifonov, A. Y.; Vasilishin, B. I.; Vasquez Arenas, G.; Ulloa, P., Search for vector mediator of dark matter production in invisible decay mode, Phys. Rev. D, 97, Article 072002 pp. (2018), URL https://link.aps.org/doi/10.1103/PhysRevD.97.072002
[512] Morel, L.; Yao, Z.; Cladé, P.; Guellati-Khélifa, S., Determination of the fine-structure constant with an accuracy of 81 parts per trillion, Nature, 588, 7836, 61-65 (2020)
[513] Dobrescu, B. A.; Mocioiu, I., Spin-dependent macroscopic forces from new particle exchange, J. High Energy Phys., 11, 005 (2006), arXiv:hep-ph/0605342
[514] Fadeev, P.; Stadnik, Y. V.; Ficek, F.; Kozlov, M. G.; Flambaum, V. V.; Budker, D., Revisiting spin-dependent forces mediated by new bosons: Potentials in the coordinate-space representation for macroscopic- and atomic-scale experiments, Phys. Rev. A, 99, Article 022113 pp. (2019), URL https://link.aps.org/doi/10.1103/PhysRevA.99.022113
[515] Frieman, J. A.; Dimopoulos, S.; Turner, M. S., Axions and stars, Phys. Rev. D, 36, 2201-2210 (1987), URL https://link.aps.org/doi/10.1103/PhysRevD.36.2201
[516] Raffelt, G. G.; Dearborn, D. S., Bounds on hadronic axions from stellar evolution, Phys. Rev. D, 36, 2211 (1987)
[517] Raffelt, G. G.; Dearborn, D. S.P., Bounds on light, weakly interacting particles from observational lifetimes of helium-burning stars, Phys. Rev. D, 37, 549-551 (1988), URL https://link.aps.org/doi/10.1103/PhysRevD.37.549
[518] Raffelt, G., Horizontal branch stars and the neutrino signal from SN 1987a, Phys. Rev. D, 38, 3811-3812 (1988), URL https://link.aps.org/doi/10.1103/PhysRevD.38.3811
[519] Raffelt, G. G., Astrophysical methods to constrain axions and other novel particle phenomena, Phys. Rep., 198, 1, 1-113 (1990), URL http://www.sciencedirect.com/science/article/pii/0370157390900546
[520] Haxton, W. C.; Lee, K. Y., Red-giant evolution, metallicity, and new bounds on hadronic axions, Phys. Rev. Lett., 66, 2557-2560 (1991), URL https://link.aps.org/doi/10.1103/PhysRevLett.66.2557
[521] Raffelt, G., Stars As Laboratories for Fundamental Physics: The Astrophysics of Neutrinos, Axions, and Other Weakly Interacting Particles (1996), University of Chicago
[522] Raffelt, G. G., Particle physics from stars, Ann. Rev. Nucl. Part. Sci., 49, 163-216 (1999), arXiv:hep-ph/9903472
[523] Raffelt, G.; Seckel, D., Bounds on exotic particle interactions from SN 1987a, Phys. Rev. Lett., 60, 1793 (1988)
[524] Raffelt, G. G., Astrophysics probes of particle physics, Phys. Rep., 333-334, 593-618 (2000), URL http://www.sciencedirect.com/science/article/pii/S0370157300000399
[525] Viaux, N.; Catelan, M.; Stetson, P. B.; Raffelt, G.; Redondo, J.; Valcarce, A. A.R.; Weiss, A., Neutrino and axion bounds from the globular cluster M5 (NGC 5904), Phys. Rev. Lett., 111, Article 231301 pp. (2013), arXiv:1311.1669
[526] Ayala Gómez, A., Beyond Standard Model Particle Constraints from Stellar Evolution (2017), Granada U., (Ph.D. thesis)
[527] Moehler, S., Hot stars in globular clusters: A spectroscopist’s view, Publ. Astron. Soc. Pac., 113, 788, 1162-1177 (2001), URL http://www.jstor.org/stable/10.1086/323297
[528] Baumgardt, H.; Hilker, M., A catalogue of masses, structural parameters, and velocity dispersion profiles of 112 milky way globular clusters, Mon. Not. R. Astron. Soc., 478, 2, 1520-1557 (2018), arXiv:https://academic.oup.com/mnras/article-pdf/478/2/1520/25060036/sty1057.pdf
[529] Forbes, D. A.; Bastian, N.; Gieles, M.; Crain, R. A.; Kruijssen, J. M.D.; Larsen, S.r. S.; Ploeckinger, S.; Agertz, O.; Trenti, M.; Ferguson, A. M.N.; Pfeffer, J.; Gnedin, O. Y., Globular cluster formation and evolution in the context of cosmological galaxy assembly: open questions, Proc. R. Soc. A: Math. Phys. Eng. Sci., 474, 2210, Article 20170616 pp. (2018), arXiv:https://royalsocietypublishing.org/doi/pdf/10.1098/rspa.2017.0616, URL https://royalsocietypublishing.org/doi/abs/10.1098/rspa.2017.0616 · Zbl 1402.85003
[530] Grifols, J.; Massó, E., Constraints on finite-range baryonic and leptonic forces from stellar evolution, Phys. Lett. B, 173, 3, 237-240 (1986), URL https://www.sciencedirect.com/science/article/pii/0370269386905095
[531] Grifols, J. A.; Massó, E.; Peris, S., Energy loss from the sun and red giants: bounds on short-range baryonic and leptonic forces, Modern Phys. Lett. A, 04, 04, 311-323 (1989), http://arxiv.org/abs/DOI: 10.1142/S0217732389000381[arXiv:DOI: 10.1142/S0217732389000381]
[532] Dicus, D. A.; Kolb, E. W.; Teplitz, V. L.; Wagoner, R. V., Astrophysical bounds on the masses of axions and Higgs particles, Phys. Rev. D, 18, 1829-1834 (1978), URL https://link.aps.org/doi/10.1103/PhysRevD.18.1829
[533] Dicus, D. A.; Kolb, E. W.; Teplitz, V. L.; Wagoner, R. V., Astrophysical bounds on very-low-mass axions, Phys. Rev. D, 22, 839-845 (1980), URL https://link.aps.org/doi/10.1103/PhysRevD.22.839
[534] Fukugita, M.; Watamura, S.; Yoshimura, M., Light pseudoscalar particle and stellar energy loss, Phys. Rev. Lett., 48, 1522-1525 (1982), URL https://link.aps.org/doi/10.1103/PhysRevLett.48.1522
[535] Fukugita, M.; Watamura, S.; Yoshimura, M., Astrophysical constraints on a new light axion and other weakly interacting particles, Phys. Rev. D, 26, 1840-1853 (1982), URL https://link.aps.org/doi/10.1103/PhysRevD.26.1840
[536] Barroso, A.; Branco, G. C., Constraints on light axions, Phys. Lett. B, 116, 4, 247-250 (1982), URL https://www.sciencedirect.com/science/article/pii/0370269382903355
[537] Pantziris, A.; Kang, K., Axion emission rates in stars and constraints on its mass, Phys. Rev. D, 33, 3509-3518 (1986), URL https://link.aps.org/doi/10.1103/PhysRevD.33.3509
[538] Raffelt, G. G., Astrophysical axion bounds diminished by screening effects, Phys. Rev. D, 33, 897-909 (1986), URL https://link.aps.org/doi/10.1103/PhysRevD.33.897
[539] Alonso, A. M.; Cooper, B. S.; Deller, A.; Gurung, L.; Hogan, S. D.; Cassidy, D. B., Velocity selection of Rydberg positronium using a curved electrostatic guide, Phys. Rev. A, 95, Article 053409 pp. (2017), URL https://link.aps.org/doi/10.1103/PhysRevA.95.053409
[540] Khoury, J.; Weltman, A., Chameleon fields: Awaiting surprises for tests of gravity in space, Phys. Rev. Lett., 93, Article 171104 pp. (2004), URL https://link.aps.org/doi/10.1103/PhysRevLett.93.171104
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.