×

Trajectory optimization using quantum computing. (English) Zbl 1425.49017

Summary: We present a framework wherein the trajectory optimization problem (or a problem involving calculus of variations) is formulated as a search problem in a discrete space. A distinctive feature of our work is the treatment of discretization of the optimization problem wherein we discretize not only independent variables (such as time) but also dependent variables. Our discretization scheme enables a reduction in computational cost through selection of coarse-grained states. It further facilitates the solution of the trajectory optimization problem via classical discrete search algorithms including deterministic and stochastic methods for obtaining a global optimum. This framework also allows us to efficiently use quantum computational algorithms for global trajectory optimization. We demonstrate that the discrete search problem can be solved by a variety of techniques including a deterministic exhaustive search in the physical space or the coefficient space, a randomized search algorithm, a quantum search algorithm or by employing a combination of randomized and quantum search algorithms depending on the nature of the problem. We illustrate our methods by solving some canonical problems in trajectory optimization. We also present a comparative study of the performances of different methods in solving our example problems. Finally, we make a case for using quantum search algorithms as they offer a quadratic speed-up in comparison to the traditional non-quantum algorithms.

MSC:

49M25 Discrete approximations in optimal control
81P68 Quantum computation

References:

[1] Bernoulli, J.: Problema Novum ad Cujus Solutionem Mathematici Invitantur. Acta Erud. 15, 264-269 (1696)
[2] Betts, J.T.: Survey of numerical methods for trajectory optimization. J. Guid. Control Dyn. 21(2), 193-207 (1998) · Zbl 1158.49303 · doi:10.2514/2.4231
[3] Bliss, G.A.: Calculus of Variations. Mathematical Association of America Chicago, Chicago (1925) · JFM 51.0372.01
[4] Boyer, M., Brassard, G., Høyer, P., Tapp, A.: Tight bounds on quantum searching. Fortschr. Phys. 46(4-5), 493-506 (1998) · doi:10.1002/(SICI)1521-3978(199806)46:4/5<493::AID-PROP493>3.0.CO;2-P
[5] Brooks, S.H.: A discussion of random methods for seeking maxima. Oper. Res. 6(2), 244-251 (1958) · doi:10.1287/opre.6.2.244
[6] Bulger, D., Baritompa, W.P., Wood, G.R.: Implementing pure adaptive search with Grover’s quantum algorithm. J. Optim. Theory Appl. 116(3), 517-529 (2003) · Zbl 1045.90048 · doi:10.1023/A:1023061218864
[7] Bulger, D.W.: Combining a local search and Grover’s algorithm in black-box global optimization. J. Optim. Theory Appl. 133(3), 289-301 (2007) · Zbl 1151.90061 · doi:10.1007/s10957-007-9168-2
[8] Cowling, I.D., Whidborne, J.F., Cooke, A.K.: Optimal trajectory planning and LQR control for a quadrotor UAV. In: UKACC International Conference on Control (2006)
[9] Dürr, C., Høyer, P.: A Quantum Algorithm for Finding the Minimum. arXiv preprint arXiv:quant-ph/9607014 (1996)
[10] Elsgolc, L.D.: Calculus of Variations. Courier Corporation, North Chelmsford (2012) · Zbl 0101.32001
[11] Fahroo, F., Ross, I.M.: Direct trajectory optimization by a Chebyshev pseudospectral method. J. Guid. Control Dyn. 25(1), 160-166 (2002) · doi:10.2514/2.4862
[12] Feynman, R.P.: The principle of least action in quantum mechanics. In: Brown, L.M. (ed.) Feynman’s Thesis—A New Approach To Quantum Theory, pp. 1-69. World Scientific (2005). https://doi.org/10.1142/5852 · Zbl 1122.81007 · doi:10.1142/5852
[13] Gelfand, I.M., Silverman, R.A., et al.: Calculus of Variations. Courier Corporation, North Chelmsford (2000)
[14] Goldstein, H.: Classical Mechanics. Pearson Education India, New Delhi (2011) · Zbl 0043.18001
[15] Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, pp. 212-219. ACM (1996) · Zbl 0922.68044
[16] Lara, P.C.S., Portugal, R., Lavor, C.: A new hybrid classical-quantum algorithm for continuous global optimization problems. J. Glob. Optim. 60(2), 317-331 (2014) · Zbl 1312.90061 · doi:10.1007/s10898-013-0112-8
[17] Mureşan, M.: Soft landing on the moon with mathematica. Math. J 14, 14-16 (2012)
[18] Nielsen, M.A., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000) · Zbl 1049.81015
[19] Patel, N.R., Smith, R.L., Zabinsky, Z.B.: Pure adaptive search in Monte Carlo optimization. Math. Program. 43(1-3), 317-328 (1989) · Zbl 0671.90047 · doi:10.1007/BF01582296
[20] Rahman, Q.I., Schmeisser, G., et al.: Analytic Theory of Polynomials. Number 26. Oxford University Press, Oxford (2002) · Zbl 1072.30006
[21] Rieffel, E.G., Polak, W.H.: Quantum Computing: A Gentle Introduction. MIT Press, Cambridge (2011) · Zbl 1221.81003
[22] Vanderbilt, D., Louie, S.G.: A Monte Carlo simulated annealing approach to optimization over continuous variables. J. Comput. Phys. 56(2), 259-271 (1984) · Zbl 0551.65045 · doi:10.1016/0021-9991(84)90095-0
[23] Von Stryk, O., Bulirsch, R.: Direct and indirect methods for trajectory optimization. Ann. Oper. Res. 37(1), 357-373 (1992) · Zbl 0784.49023 · doi:10.1007/BF02071065
[24] Woodhouse, R.: A Treatise of Isoperimetrical Problems, and the Calculus of Variations. J. Smith, Cambridge (1810)
[25] Yanofsky, N.S., Mannucci, M.A., Mannucci, M.A.: Quantum Computing for Computer Scientists, vol. 20. Cambridge University Press, Cambridge (2008) · Zbl 1161.68020 · doi:10.1017/CBO9780511813887
[26] Zabinsky, Z.B., Smith, R.L.: Pure adaptive search in global optimization. Math. Program. 53(1-3), 323-338 (1992) · Zbl 0756.90086 · doi:10.1007/BF01585710
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.