×

The formal path integral and quantum mechanics. (English) Zbl 1314.81130

Summary: Given an arbitrary Lagrangian function on \(\mathbb{R}^d\) and a choice of classical path, one can try to define Feynman’s path integral supported near the classical path as a formal power series parameterized by “Feynman diagrams,” although these diagrams may diverge. We compute this expansion and show that it is (formally, if there are ultraviolet divergences) invariant under volume-preserving changes of coordinates. We prove that if the ultraviolet divergences cancel at each order, then our formal path integral satisfies a “Fubini theorem” expressing the standard composition law for the time evolution operator in quantum mechanics. Moreover, we show that when the Lagrangian is inhomogeneous quadratic in velocity such that its homogeneous-quadratic part is given by a matrix with constant determinant, then the divergences cancel at each order. Thus, by “cutting and pasting” and choosing volume-compatible local coordinates, our construction defines a Feynman-diagrammatic ”formal path integral” for the nonrelativistic quantum mechanics of a charged particle moving in a Riemannian manifold with an external electromagnetic field.{
©2010 American Institute of Physics}

MSC:

81S40 Path integrals in quantum mechanics
81Q30 Feynman integrals and graphs; applications of algebraic topology and algebraic geometry

References:

[1] DeWitt-Morette, C., Ann. Phys., 97, 367 (1976) · Zbl 0328.46075
[2] Duru, I. H.; Kleinert, H., Fortschr. Phys., 30, 401 (1982) · doi:10.1002/prop.19820300802
[3] Dyson, F. J., Phys. Rev., 75, 486 (1948) · Zbl 0032.23702 · doi:10.1103/PhysRev.75.486
[4] Dyson, F. J., Phys. Rev., 75, 1736 (1949) · Zbl 0033.14201 · doi:10.1103/PhysRev.75.1736
[5] Elizalde, E.; Odintsov, S. D.; Romeo, A.; Bytsenko, A. A.; Zerbini, S., Zeta Regularization Techniques with Applications (1994) · Zbl 1050.81500
[6] Evans, L. C. and Zworski, M., Lectures on semiclassical analysis, 2007. .
[7] Feynman, R. P., Rev. Mod. Phys., 20, 367 (1948) · Zbl 1371.81126 · doi:10.1103/RevModPhys.20.367
[8] Feynman, R. P., Phys. Rev., 76, 769 (1949) · Zbl 0038.13302 · doi:10.1103/PhysRev.76.769
[9] Feynman, R. P.; Brown, L. M.; Dirac, P. A. M., Feynman’s Thesis: A New Approach to Quantum Theory (2005) · Zbl 1122.81007
[10] Feynman, R. P.; Hibbs, A. R., Quantum Mechanics and Path Integrals, International Series in Pure and Applied Physics (1965) · Zbl 0176.54902
[11] 11.Hardy, M., Electron. J. Com.13, Research Paper 1, pp. 13 (electronic), 2006. http://www.combinatorics.org/Volume_13/Abstracts/v13i1r1.html. · Zbl 1080.05006
[12] Helfer, A. D., Pac. J. Math., 164, 321 (1994) · Zbl 0799.58018
[13] Hori, K.; Katz, S.; Klemm, A.; Pandharipande, R.; Thomas, R.; Vafa, C.; Vakil, R.; Zaslow, E., Mirror Symmetry. Clay mathematics monographs (2003) · Zbl 1044.14018
[14] Johnson-Freyd, T., On the coordinate (in)dependence of the formal path integral (2010) · Zbl 1314.81130
[15] 15.T.Johnson-Freyd, “Feynman-diagrammatic description of the asymptotics of the time evolution operator in quantum mechanics,” Lett. Math. Phys.94, 123 (2010).10.1007/s11005-010-0424-2arXiv:1003.1156 · Zbl 1201.81059
[16] Johnson-Freyd, T. and Schommer-Pries, C. Critical points on a fiber bundle. October 2009. Online forum discussion at .
[17] Kaiser, D., Drawing Theories Apart: the Dispersion of Feynman Diagrams in Postwar Physics (2005) · Zbl 1146.81006
[18] Kleinert, H.; Chervyakov, A., Phys. Lett. B, 464, 257 (1999) · Zbl 0987.81052 · doi:10.1016/S0370-2693(99)00943-0
[19] Kleinert, H.; Chervyakov, A., Phys. Lett. A, 273, 1 (2000) · Zbl 1115.81362 · doi:10.1016/S0375-9601(00)00475-8
[20] Kleinert, H.; Chervyakov, A., Phys. Lett. B, 477, 373 (2000) · Zbl 1050.81613 · doi:10.1016/S0370-2693(00)00199-4
[21] Kleinert, H.; Chervyakov, A., Eur. Phys. J. C, 19, 743 (2001) · Zbl 1099.81506 · doi:10.1007/s100520100600
[22] Kleinert, H.; Chervyakov, A., Int. J. Mod. Phys. A, 17, 2019 (2002) · Zbl 1008.81065 · doi:10.1142/S0217751X02006146
[23] Kleinert, H.; Chervyakov, A., Phys. Lett. A, 308, 85 (2003) · Zbl 1008.82005 · doi:10.1016/S0375-9601(02)01801-7
[24] Manuel, C.; Tarrach, R., Phys. Lett. B, 328, 113 (1994) · doi:10.1016/0370-2693(94)90437-5
[25] Milnor, J.; Spivak, M.; Wells, R., Morse Theory (1963) · Zbl 0108.10401
[26] Moser, J., Trans. Amer. Math. Soc., 120, 286 (1965) · Zbl 0141.19407
[27] Penrose, R.; Welsh, D. J. A., Applications of negative dimensional tensors, Combinatorial Mathematics and Its Applications, 221-244 (1971) · Zbl 0216.43502
[28] Polyak, M.; Lyubich, M.; Takhtajan, L. A., Feynman diagrams for pedestrians and mathematicians, Graphs and Patterns in Mathematics and Theoretical Physics. Proc. Sympos. Pure Math., 15-42 (2005) · Zbl 1080.81047
[29] Reshetikhin, N. (2010)
[30] Takhtajan, L. A., Quantum Mechanics for Mathematicians (2008) · Zbl 1156.81004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.