×

Path integrals in a multiply-connected configuration space (50 years after). (English) Zbl 1483.81094

Summary: The proposal made 50 years ago by L. S. Schulman [Phys. Rev. 176, No.5,:1558–1569 )1968);M. G. G. Laidlaw andC. Morette-DeWitt (Phys. Rev. D 3, No. 9), 1375–1378 (1971; doi:10.1103/PhysRevD.3.1375)] and ;J. S. Dowker [J. Phys. A 5, 936–943 (1972)] to decompose the propagator according to the homotopy classes of paths was a major breakthrough: it showed how Feynman functional integrals opened a direct window on quantum properties of topological origin in the configuration space. This paper casts a critical look at the arguments brought by this series of papers and its numerous followers in an attempt to clarify the reason why the emergence of the unitary linear representation of the first homotopy group is not only sufficient but also necessary.

MSC:

81S40 Path integrals in quantum mechanics
46T12 Measure (Gaussian, cylindrical, etc.) and integrals (Feynman, path, Fresnel, etc.) on manifolds
14H45 Special algebraic curves and curves of low genus
81V27 Anyons
14F35 Homotopy theory and fundamental groups in algebraic geometry

References:

[1] Poe, E.A.: Marginal notes ii. a sequel to the “marginalia” of the “democratic review”. Godey’s magazine and Lady’s Book, vol. XXXI, pp. 120-123 (1845)
[2] Schulman, LS, A path integral for spin, Phys. Rev., 176, 5, 1558-1569 (1968) · doi:10.1103/PhysRev.176.1558
[3] Schulman, LS, Green’s function for an electron in a lattice, Phys. Rev., 188, 3, 1139-1142 (1969) · doi:10.1103/PhysRev.188.1139
[4] Schulman, LS, Approximate topologies, J. Math. Phys., 12, 2, 304-308 (1971) · doi:10.1063/1.1665592
[5] Laidlaw, MGG; Morette-DeWitt, C., Feynman functional integrals for systems of indistinguishable particles, Phys. Rev. D, 3, 9, 1375-1378 (1971) · doi:10.1103/PhysRevD.3.1375
[6] Dowker, JS, Quantum theory on multiply connected spaces, J. Phys. A, 5, 936-943 (1972) · doi:10.1088/0305-4470/5/7/004
[7] Schulman, LS, Techniques and Applications of Path Integration (1981), New York: Wiley, New York · Zbl 0587.28010 · doi:10.1063/1.2914703
[8] Nash, C.: Topology and physics—a historical essay. In [55], pp. 359-415, Chap. 12. See also arxiv:hep-th/9709135 · Zbl 0963.57001
[9] Mouchet, A.: Drowning by numbers: topology and physics in fluid dynamics. In [54], pp. 249-266. See also arxiv:1706.09454
[10] Dirac, P.A.M.: Quantised singularities in the electromagnetic field. Proc. R. Soc. Lond. Ser. A, 133, 60-72 (1931). reproduced in §2.1 of [59]. · JFM 57.1581.06
[11] Dirac, P.A.M.: The quantum theory of the emission and absorption of radiation. Proc. R. Soc. Lond. Ser. A. 114, 243-265 (1927). reproduced in [57] ( paper. 1 p. 1) and in [13] (paper. 1.1 p. 7) · JFM 53.0847.01
[12] Nieto, MM, Quantum phase and quantum phase operators: some physics and some history, Phys. Scripta, T48, 5-12 (1993) · doi:10.1088/0031-8949/1993/T48/001
[13] Barnett, SM; Vaccaro, JA, The Quantum Phase Operator. A Review. Series in Optics and Optoelectronics (2007), New York: Taylor and Francis, New York · Zbl 1155.81006 · doi:10.1201/b16006
[14] Feynman, R.P.: The principle of least action in quantum mechanics (1942), reproduced in [51], pp. 1-69.
[15] Feynman, R.P.: Space-time approach to non-relativistic quantum mechanics. Rev. Modern Phys. 20(2), 367-387 (1948). reproduced in [57], p. 321 and in [51], p. 71. · Zbl 1371.81126
[16] Pauli, W.: Selected topics in field quantization, volume 6 of Pauli Lectures on Physics: Selected Topics in Field Quantization. MIT press, Cambridge, 1957/73. In: Enz, C.P., and translated by S. Margulies and H.R. Lewis from the German notes Ausgewählte Kapitel aus der Feldquantisierung (Zürich, Verlag des Vereins der Mathematiker und Physiker an der eth, 1957) prepared by U. Hochstrasser und M. R. Schafroth from a course given in eth in 1950-51
[17] DeWitt, BS, Dynamical theory in curved spaces. i. A review of the classical and quantum action principles, Rev. Modern Phys., 29, 3, 377-397 (1957) · Zbl 0118.23301 · doi:10.1103/RevModPhys.29.377
[18] Edwards, SF; Gulyaev, YV, Path integrals in polar co-ordinates, Proc. R. Soc. London Ser. A, 279, 1377, 229-235 (1964) · doi:10.1098/rspa.1964.0100
[19] McLaughlin, DW; Schulman, LS, Path integrals in curved spaces, J. Math. Phys., 12, 12, 2520-2524 (1971) · doi:10.1063/1.1665567
[20] Dowker, JS, Covariant Feynman derivation of Schrodinger’s equation in a Riemannian space, J. Phys. A, 7, 1256-1265 (1974) · doi:10.1088/0305-4470/7/11/005
[21] Fanelli, R., Canonical transformations and phase space path integrals, J. Math. Phys., 17, 4, 490-493 (1976) · doi:10.1063/1.522928
[22] Gervais, J-L; Jevicki, A., Point canonical transformations in the path integral, Nuclear Phys. A, 110, 93-112 (1976) · doi:10.1016/0550-3213(76)90422-3
[23] Prokhorov, LV; Shabanov, SV, Hamiltonian Mechanics of Gauge Systems. Cambridge Monographs on Mathmatica Physics (2011), Cambridge: Cambridge University Press, Cambridge · Zbl 1230.70002 · doi:10.1017/CBO9780511976209
[24] Feynman, R.P., Hibbs, A.R.: Quantum mechanics and path integrals. International series in pure and applied physics. McGraw-Hill Publishing Company, New York, 1965. Emended edition by Daniel F. Styer (Dover, 2005) · Zbl 0176.54902
[25] Ehrenberg, W.; Siday, RE, The refractive index in electron optics and the principles of dynamics, Proc. Phys. Soc. B, 62, 1, 8-21 (1949) · Zbl 0032.23301 · doi:10.1088/0370-1301/62/1/303
[26] Aharonov, Y.; Bohm, D., Significance of electromagnetic potentials in the quantum theory, Phys. Rev., 115, 3, 485-491 (1959) · Zbl 0099.43102 · doi:10.1103/PhysRev.115.485
[27] Leinaas, JM; Myrheim, J., On the theory of identical particles, Nuovo Cimento B, 37, 1, 1-23 (1977) · doi:10.1007/BF02727953
[28] Wilczek, F., Quantum mechanics of fractional-spin particles, Phys. Rev. Lett., 49, 14, 957-959 (1982) · doi:10.1103/PhysRevLett.49.957
[29] Arovas, D.P.: Topics in fractional statistics. In [58], pp. 284-322.
[30] Bartolomei, H.; Kumar, M.; Bisognin, R.; Marguerite, A.; Berroir, J-M; Bocquillon, E.; Plaçais, B.; Cavanna, A.; Dong, Q.; Gennser, U.; Jin, Y.; Fève, G., Fractional statistics in anyon collisions, Science, 368, 6487, 173-177 (2020) · doi:10.1126/science.aaz5601
[31] Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge, 2002. ISBN 0-521-79160-X. freely available from pi.math.cornell.edu/hatcher · Zbl 1044.55001
[32] Fomenko, A., Fuchs, D.: Homotopical Topology, volume 273 of Graduate Texts in Mathematics. Springer, 2016. ISBN 9783319234885. Second edition · Zbl 1346.55001
[33] Horvathy, P.; Morandi, G.; Sudarshan, ECG, Inequivalent quantizations in multiply connected spaces, Nuovo Cimento, 11D, 1-2, 201-228 (1989) · doi:10.1007/BF02450240
[34] Oh, CH; Soo, CP; Lai, CH, The propagator in the generalized Aharonov-Bohm effect, J. Math. Phys., 29, 5, 1154-1157 (1988) · Zbl 0663.58037 · doi:10.1063/1.527957
[35] Balachandran, A.P.: Classical topology and quantum phases: quantum mechanics. In [52], pp. 1-28.
[36] Berg, HP, Feynman path integrals on manifolds and geometric methods, Nuovo Cimento, 66A, 4, 441-449 (1981) · doi:10.1007/BF02730365
[37] Tarski, J: Path integrals over manifolds. In [53], pp. 229-239. · Zbl 0491.53060
[38] Anderson, A., Changing topology and nontrivial homotopy, Phys. Lett. B, 212, 3, 334-338 (1988) · doi:10.1016/0370-2693(88)91325-1
[39] Ho, VB; Morgan, MJ, Quantum mechanics in multiply-connected spaces, J. Phys. A, 29, 1497-1510 (1996) · Zbl 0918.58077 · doi:10.1088/0305-4470/29/7/019
[40] Tanimura, S.; Tsutsui, I., Inequivalent quantizations and holonomy factor from the path-integral approach, Ann. Phys., 258, 137-156 (1997) · Zbl 0924.58009 · doi:10.1006/aphy.1997.5696
[41] Forte, S: Spin in quantum field theory. In [56], pp. 66-94 and also arxiv:hep-th/0507291
[42] Kocábová, P.; Št’ovíček, P., Generalized Bloch analysis and propagators on Riemannian manifolds with a discrete symmetry, J. Math. Phys., 49, 33518, 1-15 (2008) · Zbl 1153.81388
[43] Berry, MV, Exact Aharonov-Bohm wavefunction obtained by applying Dirac’s magnetic phase factor, Eur. J. Phys., 1, 240-244 (1980) · doi:10.1088/0143-0807/1/4/011
[44] Tonomura, A., Direct observation of thitherto unobservable quantum phenomena by using electrons, Proc. Natl. Acad. Sci. USA, 102, 42, 14952-14959 (2005) · doi:10.1073/pnas.0504720102
[45] Webb, RA; Washburn, S.; Umbach, CP; Laibowitz, RB, Observation of \(h/e\) Aharonov-Bohm oscillations in normal-metal rings, Phys. Rev. Lett., 54, 25, 2696-2699 (1985) · doi:10.1103/PhysRevLett.54.2696
[46] DeWitt-Morette, C.; Maheshwari, A.; Nelson, B., Path integration in non-relativistic quantum mechanics, Phys. Rep., 50, 5, 255-372 (1979) · doi:10.1016/0370-1573(79)90083-8
[47] Cartier, P.; DeWitt-Morette, C., A new perspective on functional integration, J. Math. Phys., 36, 5, 2237-2312 (1995) · Zbl 0853.58023 · doi:10.1063/1.531039
[48] Zak, J., Finite translations in solid-state physics, Phys. Rev. Lett., 19, 24, 1385-1387 (1967) · doi:10.1103/PhysRevLett.19.1385
[49] Ashcroft, NW; Mermin, ND, Solid State Physics (1976), Philadelphia: Saunders College, Philadelphia · Zbl 1118.82001
[50] Nayak, C.; Simon, SH; Stern, A.; Freedman, M.; Sarma, SD, Non-abelian anyons and topological quantum computation, Rev. Modern Phys., 80, 3, 1083-1159 (2008) · Zbl 1205.81062 · doi:10.1103/RevModPhys.80.1083
[51] Brown, L.M.: Feynman’s Thesis: A New Approach to Quantum Theory. World Scientific, New Jersey, 2005. ISBN 9812563660 · Zbl 1122.81007
[52] De Filippo, S., Marinaro, M., Marmo, G., Vilasi, G., editors. Geometrical and Algebraic Aspects of Nonlinear Field Theory, Amsterdam, 1989. In: Proceedings of the meeting on Geometrical and Algebraic Aspects of Nonlinear Field Theory, Amalfi, Italy, May 23-28, 1988, North-Holland. ISBN 0-444-87359-7 · Zbl 0667.00020
[53] Doebner, H.D., Andersson, S.I., Prety, H.R. editors. Differential Geometric Methods in Mathematical Physics, volume 905 of Lecture notes in Maths, Berlin, 1982. In: Proceedings of a Conference Held at the Technical University of Clausthal, FRG, July 23-25, 1980, Springer. ISBN 3-540-11197-2 · Zbl 0472.00009
[54] Emmer, M., Abate, M. editors. Imagine Maths 6. Between culture and mathematics, Cham, 2018. Springer. ISBN 978-3-319-93948-3 · Zbl 1402.00033
[55] James, I.M. editor. History of topology, Amsterdam, 1999. North-Holland. ISBN 0-444-82375-1 · Zbl 0922.54003
[56] Pötz, W., Fabian, J., Hohenester, U., editors. Modern aspects of spin physics, volume 712 of Lecture notes in Physics, Berlin, 2007. Schladming Winter School in Theoretical Physics, Springer. ISBN 3-540-38590-8 · Zbl 1090.81005
[57] Schwinger, J., Selected Papers on Quantum Electrodynamics (1958), New York: Dover, New York · Zbl 0088.22203
[58] Shapere, A., Wilczek, F. (eds.): Geometric Phases in Physics, volume 5 of Advanced Series in Mathematical Physics. World Scientific, Singapore, 1989. ISBN 9971-50-599-1 · Zbl 0914.00014
[59] Thouless, DJ, Topological Quantum Numbers in Nonrelativistic Physics (1998), Singapore: World Scientific, Singapore · Zbl 1346.81004 · doi:10.1142/3318
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.