×

On the Biot-Savart law of electromagnetism applied to the atomic circulation current. (English) Zbl 1519.81505

Summary: The law of Biot and Savart, derived by observation of the magnetic field produced by electric current flowing in a macroscopic conductor, is shown to yield the correct expression for the nuclear hyperfine interaction, when applied to the electron circulation current derived for hydrogenic atoms from the theories of Pauli and Dirac, as further developed independently by Darwin, Gordon and Hartree. The law thus applies also on the microscopic scale to the magnetic field generated by the electron probability flux of the various atomic eigenstates, and may clearly be generalised formally for application to many-electron atoms, as outlined by Hartree. The present, fully relativistic, treatment is advantageous in avoiding the usual artificial splitting of the hyperfine interaction into a magnetic dipole-dipole contribution and a separate contribution arising from electron orbital motion. The formula obtained forms the basis for the inclusion of higher order (quantum electrodynamic and nuclear recoil) corrections. Interest in this subject is enhanced by observations of ‘strongly forbidden’ (magnetic dipole) atomic transitions arising from the nuclear magnetic interaction, notably the 21 cm line of hydrogen, which has played an important role in astrophysics, in both measurements of galactic rotation and studies of the early Universe.

MSC:

81V45 Atomic physics
78A25 Electromagnetic theory (general)
Full Text: DOI

References:

[1] Whittaker Sir E T 1951 A History of the Theories of Aether and Electricity I. The Classical Theories (London: Nelson) ch 3 · Zbl 0043.24503
[2] Jackson J D 1999 Classical Electrodynamics 3rd edn (New York: Wiley) ch 5 · Zbl 0920.00012
[3] Hey J D 2018 The hyperfine radio spectrum of hydrogen: some intriguing aspects of atomic theory applied in astrophysics and cosmology The Physical Universe ed S M Wagh, S D Maharaj and G Chon (Nagpur: Central India Research Institute) pp 291-324
[4] Sobel’man I I 1972 Introduction to the Theory of Atomic Spectra ed G K Woodgate (Oxford: Pergamon) ch 9 (translated by T F J Le Vierge)
[5] Ewen H I and Purcell E M 1951 Observation of a line in the galactic radio spectrum: radiation from galactic hydrogen at 1420 Mc/sec Nature168 356 · doi:10.1038/168356a0
[6] Muller C A and Oort J H 1951 The interstellar hydrogen line at 1420 Mc/sec., and an estimate of galactic rotation Nature168 357-8 · doi:10.1038/168357a0
[7] Chang T-C, Pen U-L, Peterson J B and McDonald P 2008 Baryon acoustic oscillation intensity mapping of dark energy Phys. Rev. Lett.100 091303 · doi:10.1103/physrevlett.100.091303
[8] Chang T-C, Pen U-L, Bandura K and Peterson J B 2010 An intensity map of hydrogen 21 cm emission at redshift z ≈ 0.8 Nature466 463-5 · doi:10.1038/nature09187
[9] Bakker C J and van de Hulst H C 1945 Radiogolven uit het wereldruim. I. Ontvangst der radiogolven II. Herkomst der radiogolven Ned. Tijdschr. Natuurk.11 201-21
[10] Rubin V C, Ford W K Jr and Thonnard N 1980 Rotational properties of 21 SC galaxies with a large range of luminosities and radii, from NGC 4605 (R = 4 kpc) to UGC 2885 (R = 122 kpc) Astrophys. J.238 471-87 · doi:10.1086/158003
[11] Thonnard N, Rubin V C, Ford W K J Jr and Roberts M S 1978 Radial velocities of spiral galaxies determined from 21 cm neutral hydrogen observations Astron. J.83 1564-5 · doi:10.1086/112364
[12] Corbelli E and Salucci P 2000 The extended rotation curve and the dark matter halo of M33 Mon. Not. R. Astron. Soc.311 441-7 · doi:10.1046/j.1365-8711.2000.03075.x
[13] Begeman K G, Broeils A H and Sanders R H 1991 Extended rotation curves of spiral galaxies: dark haloes and modified dynamics Mon. Not. R. Astron. Soc.249 523-37 · doi:10.1093/mnras/249.3.523
[14] Madau P, Meiksin A and Rees M J 1997 21 centimeter tomography of the intergalactic medium at high redshift Astrophys. J.475 429-44 · doi:10.1086/303549
[15] Peebles P J E 1968 Recombination of the primeval plasma Astrophys. J.153 1-11 · doi:10.1086/149628
[16] Ali-Haïmoud Y 2013 Effective conductance method for the primordial recombination spectrum Phys. Rev. D 87 023526 · doi:10.1103/physrevd.87.023526
[17] Dupays A, Beswick A, Lepetit B, Rizzo C and Bakalov D 2003 Proton Zemach radius from measurements of the hyperfine splitting of hydrogen and muonic hydrogen Phys. Rev. A 68 052503 · doi:10.1103/physreva.68.052503
[18] Mohr P J, Newell D B and Taylor B N 2016 CODATA recommended values of the fundamental physical constants: 2014 Rev. Mod. Phys.88 035009 · doi:10.1103/revmodphys.88.035009
[19] Schiff L I 1968 Quantum Mechanics 3rd edn (New York: McGraw-Hill) · Zbl 0068.40202
[20] Merzbacher E 1998 Quantum Mechanics 3rd edn (New York: Wiley)
[21] Landau L D, Lifshitz E M and Pitaevskii L P 1977 Quantum Mechanics: Non-relativistic Theory 3rd edn (Oxford: Pergamon) (translated by J B Sykes and J S Bell)
[22] Biedenharn L C and Louck J D 1981 Angular Momentum in Quantum Physics: Theory and Application(Encyclopedia of Mathematics and its Applications vol 8) ed G- C Rota and P A Carruthers (Reading, Massachusetts: Addison-Wesley) ch 7 · Zbl 0474.00023
[23] Hey J D 2006 On the determination of radial matrix elements for high-n transitions in hydrogenic atoms and ions J. Phys. B: At. Mol. Opt. Phys.39 2641-64 · doi:10.1088/0953-4075/39/12/003
[24] Hey J D 2007 Some properties of Stark states of hydrogenic atoms and ions J. Phys. B: At. Mol. Opt. Phys.40 4077-96 · doi:10.1088/0953-4075/40/20/009
[25] Hey J D 2019 On the use of the axially symmetric paraboloidal coordinate system in deriving some properties of Stark states of hydrogenic atoms and ions J. Phys. A: Math. Theor.52 045203 · Zbl 1422.81176 · doi:10.1088/1751-8121/aaf4da
[26] Lebedev N N 1972 Special Functions and Their Applications (New York: Dover) (translated by R A Silverman) · Zbl 0271.33001
[27] Davis L Jr 1939 A note on the wave functions of the relativistic hydrogenic atom Phys. Rev.56 186-7 · JFM 65.1537.03 · doi:10.1103/physrev.56.186
[28] Erdélyi A, Magnus W, Oberhettinger F and Tricomi F G 1953 Higher Transcendental Function vols 1 and 2 (New York: McGraw-Hill) · Zbl 0051.30303
[29] Bethe H A and Salpeter E E 1957 Quantum Mechanics of One- and Two-Electron Atoms (Berlin: Springer) · Zbl 0089.21006 · doi:10.1007/978-3-662-12869-5
[30] Bransden B H and Joachain C J 1983 Physics of Atoms and Molecules (London: Longman)
[31] Irving J and Mullineux N 1959 Mathematics in Physics and Engineering (New York: Academic) · Zbl 0086.04003
[32] Hey J D 2017 On forms of the Coulomb approximation as a useful source of atomic data for the spectroscopy of astrophysical and fusion plasmas J. Phys. B: At. Mol. Opt. Phys.50 065701 · doi:10.1088/1361-6455/aa5474
[33] Hey J D 2015 On the Runge-Lenz-Pauli vector operator as an aid to the calculation of atomic processes in laboratory and astrophysical plasmas J. Phys. B: At. Mol. Opt. Phys.48 185701 · doi:10.1088/0953-4075/48/18/185701
[34] Erickson G W 1977 Energy levels of one‐electron atoms J. Phys. Chem. Ref. Data6 831-69 · doi:10.1063/1.555557
[35] Gradshteyn I S and Ryzhik I M 1965 Table of Integrals, Series and Products 4th ed A Jeffrey (New York: Academic) (prepared by Y V Geronimus, M Y Tseytlin)
[36] Hey J D 1993 Further properties of hydrogenic wave functions Am. J. Phys.61 741-9 · doi:10.1119/1.17150
[37] Pauling L and Goudsmit S 1930 The Structure of Line Spectra (New York: McGraw-Hill) · JFM 56.1289.03
[38] White H E 1934 Introduction to Atomic Spectra (New York: McGraw-Hill)
[39] Fermi E 1930 Über die magnetischen Momente der Atomkerne Z. Phys.60 320-33 · JFM 56.1318.05 · doi:10.1007/bf01339933
[40] Darwin C G 1928 The wave equations of the electron Proc. R. Soc. A 118 654-80 · JFM 54.0973.06 · doi:10.1098/rspa.1928.0076
[41] Gordon W 1928 Der Strom der Diracschen Elektronentheorie Z. Phys.50 630-2 · JFM 54.0973.05 · doi:10.1007/bf01327881
[42] Hartree D R 1929 The distribution of charge and current in an atom consisting of many electrons obeying Dirac’s equations Math. Proc. Camb. Phil. Soc.25 225-36 · JFM 55.0528.05 · doi:10.1017/s0305004100018764
[43] Corinaldesi E 1963 Relativistic Wave Mechanics ed F Strocchi (Amsterdam: North-Holland) · Zbl 0114.20203
[44] Sommerfeld A 1978 Atombau und Spektrallinien vol 2 4th edn (Frankfurt: Harri Deutsch) ch 4
[45] Ferrell R A 1960 Electron-nucleus hyperfine interaction in atoms Am. J. Phys.28 484-6 · doi:10.1119/1.1935840
[46] Griffiths D J 1982 Hyperfine splitting in the ground state of hydrogen Am. J. Phys.50 698-703 · doi:10.1119/1.12733
[47] Powell R E 1968 Relativistic quantum chemistry: the electrons and the nodes J. Chem. Educ.45 558-63 · doi:10.1021/ed045p558
[48] Ogilvie J F 2019 The hydrogen atom according to relativistic wave mechanics—amplitude functions and circulating electronic currents Cienc. Tecnol.35 14-27
[49] Lenz W 1924 Über den Bewegungsverlauf und die Quantenzustände der gestӧrten Keplerbewegung Z. Phys.24 197-207 · doi:10.1007/bf01327245
[50] Pauli W 1926 Über das Wasserstoffspektrum vom Standpunkt der neuen Quantenmechanik Z. Phys.36 336-63 · JFM 52.0978.02 · doi:10.1007/bf01450175
[51] Eides M I, Grotch H and Shelyuto V A 2001 Theory of light hydrogenlike atoms Phys. Rep.342 63-261 · Zbl 0972.81688 · doi:10.1016/S0370-1573(00)00077-6
[52] Karshenboim S G and Ivanov V G 2002 Hyperfine structure in hydrogen and helium ion Phys. Lett. B 524 259-64 · doi:10.1016/s0370-2693(01)01394-6
[53] Breit G 1930 Possible effects of nuclear spin on X-ray terms Phys. Rev.35 1447-51 · JFM 56.1311.03 · doi:10.1103/physrev.35.1447
[54] Gordon W 1928 Die Energieniveaus des Wasserstoffatoms nach der Diracschen Quantentheorie des Elektrons Z. Phys.48 11-4 · JFM 54.0973.04 · doi:10.1007/bf01351570
[55] Schwinger J 1948 On quantum-electrodynamics and the magnetic moment of the electron Phys. Rev.73 416-7 · Zbl 0035.13102 · doi:10.1103/physrev.73.416
[56] Schwinger J 1949 Quantum electrodynamics. III. The electromagnetic properties of the electron—radiative corrections to scattering Phys. Rev.76 790-817 · Zbl 0035.13201 · doi:10.1103/physrev.76.790
[57] Sommerfield C M 1957 Magnetic dipole moment of the electron Phys. Rev.107 328-9 · doi:10.1103/physrev.107.328
[58] Sommerfield C M 1958 The magnetic moment of the electron Ann. Phys., NY5 26-57 · Zbl 0082.42602 · doi:10.1016/0003-4916(58)90003-4
[59] Karplus R, Klein A and Schwinger J 1951 Electrodynamic displacement of atomic energy levels Phys. Rev.84 597-8 · doi:10.1103/physrev.84.597
[60] Karplus R and Klein A 1952 Electrodynamic displacement of atomic energy levels. I. Hyperfine structure Phys. Rev.85 972-84 · Zbl 0047.23102 · doi:10.1103/physrev.85.972
[61] Kroll N M and Pollock F 1951 Radiative corrections to the hyperfine structure and the fine structure constant Phys. Rev.84 594-5 · doi:10.1103/physrev.84.594
[62] Kroll N M and Pollock F 1952 Second-order radiative corrections to hyperfine structure Phys. Rev.86 876-88 · Zbl 0047.23101 · doi:10.1103/physrev.86.876
[63] Arnowitt R 1953 The hyperfine structure of hydrogen Phys. Rev.92 1002-9 · Zbl 0051.44804 · doi:10.1103/physrev.92.1002
[64] Wheeler J A 1946 Polyelectrons Ann. New York Acad. Sci.48 219-38 · doi:10.1111/j.1749-6632.1946.tb31764.x
[65] Harris I and Brown L M 1957 Radiative corrections to pair annihilation Phys. Rev.105 1656-61 · Zbl 0079.42803 · doi:10.1103/physrev.105.1656
[66] Ore A and Powell J L 1949 Three-photon annihilation of an electron-positron pair Phys. Rev.75 1696-9 · Zbl 0033.04102 · doi:10.1103/physrev.75.1696
[67] Basson J K 1954 Direct quantitative observation of the three-photon annihilation of a positron-negatron pair Phys. Rev.96 691-6 · doi:10.1103/physrev.96.691
[68] Caswell W E and Lepage G P 1979 O(α2 ln(α−1)) corrections in positronium: Hyperfine splitting and decay rate Phys. Rev. A 20 36-43 · doi:10.1103/physreva.20.36
[69] Tomozawa Y 1980 Radiative corrections to parapositronium decay Ann. Phys., NY128 463-90 · doi:10.1016/0003-4916(80)90329-2
[70] Al-Ramadhan A H and Gidley D W 1994 New precision measurement of the decay rate of singlet positronium Phys. Rev. Lett.72 1632-5 · doi:10.1103/physrevlett.72.1632
[71] Kataoka Y, Asai S and Kobayashi T 2009 First test of O(α2) correction of the orthopositronium decay rate Phys. Lett. B 671 219-23 · doi:10.1016/j.physletb.2008.12.008
[72] Adachi S, Chiba M, Hirose T, Nagayama S, Nakamitsu Y, Sato T and Yamada T 1990 Measurement of e+e− annihilation at rest into four γ rays Phys. Rev. Lett.65 2634-7 · doi:10.1103/physrevlett.65.2634
[73] Ferrell R A 1951 The positronium fine structure Phys. Rev.84 858-9 · doi:10.1103/physrev.84.858
[74] Karplus R and Klein A 1952 Electrodynamic displacement of atomic energy levels. III. The hyperfine structure of positronium Phys. Rev.87 848-58 · Zbl 0048.22502 · doi:10.1103/physrev.87.848
[75] Fulton T, Owen D A and Repko W W 1971 Hyperfine structure of positronium Phys. Rev. A 4 1802-11 · doi:10.1103/physreva.4.1802
[76] Barbieri R and Remiddi E 1976 More α6 ln α terms in positronium ground state splitting Phys. Lett. B 65 258-62 · doi:10.1016/0370-2693(76)90177-5
[77] Bodwin G T and Yennie D R 1978 Hyperfine splitting in positronium and muonium Phys. Rep.43 267-303 · doi:10.1016/0370-1573(78)90151-5
[78] Kniehl B A and Penin A A 2000 Order α7 ln(1/α) contribution to positronium hyperfine splitting Phys. Rev. Lett.85 5094-7 · doi:10.1103/physrevlett.85.5094
[79] Ishida A, Namba T, Asai S, Kobayashi T, Saito H, Yoshida M, Tanaka K and Yamamoto A 2014 New precision measurement of hyperfine splitting of positronium Phys. Lett. B 734 338-44 · doi:10.1016/j.physletb.2014.05.083
[80] Melnikov K and Yelkhovsky A 2001 O(α3 ln α)Corrections to muonium and positronium hyperfine splitting Phys. Rev. Lett.86 1498-501 · doi:10.1103/physrevlett.86.1498
[81] Garstang R H 1984 Hyperfine structure and the broadening of sunspot spectral lines J. Opt. Soc. Am. B 1 311-3 · doi:10.1364/josab.1.000311
[82] Garstang R H 1995 Radiative hyperfine transitions Astrophys. J.447 962-5 · doi:10.1086/175933
[83] Breit G 1931 On the hyperfine structure of heavy elements Phys. Rev.38 463-72 · Zbl 0002.22803 · doi:10.1103/physrev.38.463
[84] Schwartz C 1955 Theory of hyperfine structure Phys. Rev.97 380-95 · Zbl 0067.23004 · doi:10.1103/physrev.97.380
[85] Panofsky W K H and Phillips M 1962 Classical Electricity and Magnetism 2nd edn (Reading, Massachusetts: Addison-Wesley) · Zbl 0122.21401
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.