×

From aether impulse to QED: Sommerfeld and the Bremsstrahlen theory. (English) Zbl 1320.81014

Summary: The radiation that is due to the braking of charged particles has been in the focus of theoretical physics since the discovery of X-rays by the end of the 19th century. The impact of cathode rays in the anti-cathode of an X-ray tube that resulted in the production of X-rays led to the view that X-rays are aether impulses spreading from the site of the impact. In 1909, Arnold Sommerfeld calculated from Maxwell’s equations the angular distribution of electromagnetic radiation due to the braking of electrons. He thereby coined the notion of “Bremsstrahlen.” In 1923, Hendrik A. Kramers provided a quantum theoretical explanation of this process by means of Bohr’s correspondence principle. With the advent of quantum mechanics the theory of bremsstrahlung became a target of opportunity for theorists like Yoshikatsu Sugiura, Robert Oppenheimer, and-again-Sommerfeld, who presented in 1931 a comprehensive treatise on this subject. Throughout the 1930s, Sommerfeld’s disciples in Munich and elsewhere extended and improved the bremsstrahlen theory. Hans Bethe and Walter Heitler, in particular, in 1934 presented a theory that was later regarded as “the most important achievement of QED in the 1930s” (Freeman Dyson). From a historical perspective the bremsstrahlen problem may be regarded as a probe for the evolution of theories in response to revolutionary changes in the underlying principles.

MSC:

81-03 History of quantum theory
78-03 History of optics and electromagnetic theory
01A50 History of mathematics in the 18th century
01A60 History of mathematics in the 20th century
78A40 Waves and radiation in optics and electromagnetic theory
78A55 Technical applications of optics and electromagnetic theory
81V10 Electromagnetic interaction; quantum electrodynamics
81V80 Quantum optics
Full Text: DOI

References:

[2] Arkani-Hamed, N.; Finkbeiner, D.; Slatyer, T.; Weiner, N., A theory of dark matter, Physical Review D, 79, 015014 (2009)
[5] Bethe, H. A., Sommerfeld׳s seminar, Physics in Perspective, 2, 3-5 (2000)
[7] Bethe, H. A.; Maximon, L. C., Theory of Bremsstrahlung and pair production. I. Differential cross section, Physical Review, 93, 768-784 (1954) · Zbl 0055.21703
[8] Bloch, F.; Nordsieck, A., Note on the radiation field of the electron, Physical Review, 52, 54-59 (1937) · JFM 63.1393.02
[10] Brown, L. M., The Compton effect as one path to QED, Studies in History and Philosophy of Modern Physics, 33, 211-249 (2002) · Zbl 1222.81006
[11] Cassidy, D. C., Cosmic ray showers, high energy physics, and quantum field theories: programmatic interactions in the 1930s, Historical Studies in the Physical Sciences, 12, 1-39 (1981)
[12] Debye, P.; Sommerfeld, A., Theorie des lichtelektrischen Effektes vom Standpunkt des Wirkungsquantums, Annalen der Physik, 41, 873-930 (1913) · JFM 44.0974.01
[13] Dresden, M. H.A., Kramers: between tradition and revolution (1987), Springer: Springer New York
[14] Duane, W., The character of the general or continuous spectrum radiation, Proceedings of the National Academy of Sciences of the United States of America, 13, 662-670 (1927)
[15] Duane, W., The general X-radiation from Mercury vapor, Proceedings of the National Academy of Sciences of the United States of America, 14, 450-458 (1928)
[16] Duane, W., On the polarization of X-radiation, Proceedings of the National Academy of Sciences of the United States of America, 15, 805-815 (1929)
[17] Dyson, F., Hans Bethe and quantum electrodynamics, (Brown, Gerald E.; Lee, Chang-Hwan, Hans Bethe and his physics (2006), World Scientific Publishing: World Scientific Publishing Singapore), 157-163
[18] Eckert, M., Disputed discoveryThe beginnings of X-ray diffraction in crystals in 1912 and its repercussions, Acta Crystallographica, A68, 30-39 (2012)
[19] Eckert, M., Arnold Sommerfeld. Science, life and turbulent times, 1868-1951 (2013), Springer: Springer New York
[21] Eddington, A. S., The internal constitution of the stars (1926), Cambridge University Press: Cambridge University Press Cambridge · JFM 52.1021.05
[22] Elwert, G., Verschärfte Berechnung von Intensität und Polarisation im kontinuierlichen Röntgenspektrum1, Annalen der Physik, 426, 178-208 (1939) · Zbl 0020.27902
[23] Elwert, G.; Haug, E., Calculation of Bremsstrahlung cross sections with Sommerfeld-Maue eigenfunctions, Physical Review, 183, 90-105 (1969)
[26] Gaunt, J. A., Continuous absorption, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 229, 163-204 (1930) · JFM 56.1301.04
[28] Gaunt, J. A., Über die Strahlung der freien Elektronen im Coulombfeld, Zeitschrift für Physik, 59, 508-513 (1930) · JFM 56.1326.07
[29] Gordon, W., Über den Stoß zweier Punktladungen nach der Wellenmechanik, Zeitschrift für Physik, 48, 180-191 (1928) · JFM 54.0965.04
[31] Heilbron, J. L., The Kossel-Sommerfeld theory and the ring atom, Isis, 58, 451-485 (1967)
[32] Heitler, W., Über die bei sehr schnellen Stößen emittierte Strahlung, Zeitschrift für Physik, 84, 145-167 (1933) · Zbl 0007.26903
[33] Heitler, W., The quantum theory of radiation (1936), Clarendon: Clarendon London · JFM 62.1612.01
[34] Heitler, W.; Sauter, F., Stopping of fast particles with emission of radiation and the birth of positive electrons, Nature, 132, 892 (1933) · JFM 59.0804.06
[35] Hermann, A., Die frühe Diskussion zwischen Stark und Sommerfeld über die Quantenhypothese (1), Centaurus, 12, 38-59 (1968)
[36] Kaiser, D., Drawing theories apart: The dispersion of Feynman diagrams in postwar physics (2005), The University of Chicago Press: The University of Chicago Press Chicago · Zbl 1146.81006
[37] Kirkpatrick, P.; Wiedmann, L., Theoretical continuous X-ray energy and polarization, Physical Review, 67, 321-339 (1945)
[38] Kramers, H. A., On the theory of X-ray absorption and of the continuous X-ray spectrum, Philosophical Magazine, 46, 836-871 (1923)
[39] Kuhlen, M.; Madau, P.; Silk, J., Exploring dark matter with Milky Way substructure, Science, 325, 970-973 (2009)
[40] Kulenkampff, H., Über das kontinuierliche Röntgenspektrum, Annalen der Physik, 374, 548-596 (1922)
[41] Kulenkampff, H., Untersuchungen der kontinuierlichen Röntgenstrahlung dünner Aluminiumfolien, Annalen der Physik, 392, 597-637 (1928)
[42] Kulenkampff, H., Untersuchungen über die kontinuierliche Röntgenstrahlung, Physikalische Zeitschrift, 30, 513-515 (1929)
[43] Lacki, J.; Ruegg, H.; Telegdi, V., The road to Stueckelberg׳s covariant perturbation theory as illustrated by successive treatments of Compton scattering, Studies in the History and Philosophy of Modern Physics, 30B, 457-518 (1999) · Zbl 1222.81013
[44] Liu, Z. P.; Wu, Y. L.; Zhou, Y. F., Sommerfeld enhancements with vector, scalar, and pseudoscalar force carriers, Physical Review D, 88, 96008 (2013)
[45] Maue, A. W., Das kontinuierliche und kontinuierlich-diskrete Röntgenspektrum nach der Theorie von Kramers und nach der Wellenmechanik, Annalen der Physik, 405, 161-190 (1932) · Zbl 0004.23602
[47] Neunhöffer, M., Beiträge zur Theorie des kontinuierlichen Anteils der Röntgenstrahlen, Annalen der Physik, 386, 493-522 (1926) · JFM 52.0946.06
[48] Oppenheimer, J. R., Bemerkung zur Zerstreuung der \(α\)-Teilchen, Zeitschrift für Physik, 43, 413-415 (1927)
[49] Oppenheimer, J. R., Über die Strahlung der freien Elektronen im Coulombfeld, Zeitschrift für Physik, 55, 725-737 (1929) · JFM 55.0527.01
[50] Pauli, W.; Fierz, M., Zur Theorie der Emission langwelliger Lichtquanten, Nuovo Cimento, 15, 167-188 (1938) · JFM 64.1487.01
[51] Sauter, F., Lösung der Diracschen Gleichungen ohne Spezialisierung der Diracschen Operatoren, Zeitschrift für Physik, 63, 803-814 (1930) · JFM 56.1305.01
[52] Sauter, F., Über den atomaren Photoeffekt bei großer Härte der anregenden Strahlung, Annalen der Physik, 401, 217-248 (1931) · JFM 57.1586.06
[53] Sauter, F., Über den atomaren Photoeffekt in der K-Schale nach der relativistischen Wellenmechanik Diracs, Annalen der Physik, 403, 454-488 (1931) · JFM 57.1586.07
[54] Sauter, F., Zur unrelativistischen Theorie des kontinuierlichen Röntgenspektrums, Annalen der Physik, 410, 486-496 (1933) · Zbl 0008.18805
[55] Sauter, F., Über die Bremsstrahlung schneller Elektronen, Annalen der Physik, 412, 404-412 (1934) · JFM 60.1455.05
[56] Scherzer, O., Über die Ausstrahlung bei der Bremsung von Protonen und schnellen Elektronen, Annalen der Physik, 405, 137-160 (1932) · JFM 58.0945.02
[57] Schrödinger, E., Quantisierung als Eigenwertproblem, Dritte Mitteilung, 384, 437-490 (1926) · JFM 52.0966.02
[58] Schweber, S. S., QED and the men who made it: Dyson, Feynman, Schwinger, and Tomonaga (1994), Princeton University Press: Princeton University Press Princeton · Zbl 0815.01011
[59] Schweber, S. S., Nuclear forces: The making of the Physicist Hans Bethe (2012), Harvard University Press
[61] Seth, S., Crafting the quantum: Arnold Sommerfeld and the practice of theory, 1890-1926 (2010), MIT Press: MIT Press Cambridge, Mass · Zbl 1238.81003
[62] Simon, A., Bremsstrahlung in high energy nucleon-nucleon collisions, Physical Review, 79, 573-576 (1950) · Zbl 0041.33309
[63] Smith, L. P.A., Comparison of the theoretical results of Sugiura and Sommerfeld on the production of X-rays, Physical Review, 40, 885-886 (1932)
[64] Smith, L. P., Quantum theory of the continuous X-ray spectrum. Part I, Reviews of Modern Physics, 6, 69-89 (1934) · Zbl 0009.13905
[65] Sommerfeld, A., Über die Verteilung der Intensität bei der Emission von Röntgenstrahlen, Physikalische Zeitschrift, 10, 969-976 (1909) · JFM 41.0951.03
[68] Sommerfeld, A., Unsere gegenwärtigen Anschauungen über Röntgenstrahlung, Naturwissenschaften, 1, 705-713 (1913)
[69] Sommerfeld, A., Über das Spektrum der Röntgenstrahlung, Annalen der Physik, 351, 721-748 (1915)
[70] Sommerfeld, A., Atombau und Spektrallinien (1919), Vieweg: Vieweg Braunschweig · JFM 55.1173.02
[71] Sommerfeld, A., Atombau und Spektrallinien (1924), Braunschweig: Vieweg · JFM 55.1173.02
[72] Sommerfeld, A., About the production of the continuous X-ray spectrum, Proceedings of the National Academy of Sciences, 15, 393-400 (1929) · JFM 55.0542.03
[74] Sommerfeld, A., On the production of X-radiation, according to wave mechanics, Journal of the Franklin Institute, 208, 571-588 (1929) · JFM 57.1227.03
[75] Sommerfeld, A., Über die Beugung und Bremsung der Elektronen, Annalen der Physik, 403, 257-330 (1931) · JFM 57.1222.03
[77] Sommerfeld, A., Atombau und Spektrallinien. II. Band (1939), Vieweg: Vieweg Braunschweig · Zbl 0022.18204
[78] Sommerfeld, A.; Maue, A. W., Über den Bremsverlust von Kathodenstrahlen beim Auftreffen auf Atomkerne, Annalen der Physik, 23, 1-8 (1935) · Zbl 0012.28503
[79] Sommerfeld, A.; Maue, A. W., Verfahren zur näherungsweisen Anpassung einer Lösung der Schrödinger- an die Diracgleichung, Annalen der Physik, 414, 629-642 (1935) · Zbl 0011.33003
[80] Sommerfeld, A.; Schur, G., Über den Photoeffekt in der K-Schale der Atome, insbesondere über die Voreilung der Photoelektronen, Annalen der Physik, 396, 409-432 (1930) · JFM 56.1321.05
[81] Stephenson, S. T., The continuous X-ray spectrum, Handbuch der Physik, 30, 337-370 (1957)
[82] Sugiura, Y., On the transition probability between two states with positive energy in a central field, Physical Review, 34, 858-875 (1929) · JFM 55.0537.03
[84] Wagner, E., Spektraluntersuchungen an Röntgenstrahlen. Über die Messung der Planckschen Quantenkonstante h aus dem zur Erzeugung homogener Bremsstrahlung notwendigen Minimumpotential, Annalen der Physik, 362, 401-470 (1918)
[86] Weinstock, R., Theory of the continuous X-ray spectrum, Physical Review, 61, 584-590 (1942)
[87] Weinstock, R., Theory of the continuous X-ray spectrumShort wave limit, Physical Review, 64, 276-278 (1943)
[88] Weinstock, R., Continuous X-ray spectrumNote to experimenters, Physical Review, 65 (1944)
[89] Wentzel, G., Zur Quantenoptik, Zeitschrift für Physik, 22, 193-199 (1924)
[90] Wentzel, G., Zur Quantentheorie des Röntgenbremsspektrums, Zeitschrift für Physik, 27, 257-284 (1924) · JFM 51.0747.07
[91] Wheaton, B. R., The tiger and the shark. Empirical roots of wave-particle dualism (1983), Cambridge University Press: Cambridge University Press Cambridge
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.