×

Generalized continued fractions: a unified definition and a Pringsheim-type convergence criterion. (English) Zbl 1485.40003

Summary: In the literature, many generalizations of continued fractions have been introduced, and for each of them, convergence results have been proved. In this paper, we suggest a definition of generalized continued fractions which covers a great variety of former generalizations as special cases. As a starting point for a convergence theory, we prove a Pringsheim-type convergence criterion which includes criteria for the aforementioned special cases. Furthermore, we address several fields in which our definition may be applied.

MSC:

40A15 Convergence and divergence of continued fractions
11A55 Continued fractions
11J70 Continued fractions and generalizations

References:

[1] Baumann, H.: A Pringsheim-type convergence criterion for continued fractions in Banach algebras. J. Approx. Theory 166, 154-162 (2013) · Zbl 1275.46034 · doi:10.1016/j.jat.2012.11.003
[2] Baumann, H.: Two-sided continued fractions in Banach algebras—a Śleszyński-Pringsheim-type convergence criterion and applications. J. Approx. Theory 199(C), 13-28 (2015) · Zbl 1346.46044 · doi:10.1016/j.jat.2015.06.005
[3] Baumann, H., Hanschke, T.: Inherent numerical instability in computing invariant measures of Markov chains. Appl. Math. 8, 1367-1385 (2017) · doi:10.4236/am.2017.89101
[4] Baumann, H., Sandmann, W.: Numerical solution of level dependent quasi-birth-and-death processes. Proc. Comput. Sci. 1(1), 1561-1569 (2010) · doi:10.1016/j.procs.2010.04.175
[5] Baumann, H., Sandmann, W.: Computing stationary expectations in level-dependent QBD processes. J. Appl. Probab. 50(1), 151-165 (2013) · Zbl 1273.60089 · doi:10.1239/jap/1363784430
[6] Bernstein, L.: The Jacobi-Perron Algorithm: Its Theory and Application. Lecture Notes Math., vol. 207. Springer, Berlin (1971) · Zbl 0213.05201 · doi:10.1007/BFb0069405
[7] Bobryk, R.V.: Closure method and asymptotic expansions for linear stochastic systems. J. Math. Anal. Appl. 329, 703-711 (2007) · Zbl 1108.60051 · doi:10.1016/j.jmaa.2006.07.025
[8] Bright, L., Taylor, P.G.: Calculating the equilibrium distribution in level dependent quasi-birth-and-death processes. Commun. Stat., Stoch. Models 11(3), 497-525 (1995) · Zbl 0837.60081 · doi:10.1080/15326349508807357
[9] de Bruin, M.G.: Generalized C-fractions and a multi-dimensional Padé table. Doctoral thesis, University of Amsterdam (1974) · Zbl 0273.41028
[10] de Bruin, M.G.: Convergence of generalized C-fractions. J. Approx. Theory 24, 177-207 (1978) · Zbl 0405.41007 · doi:10.1016/0021-9045(78)90023-0
[11] Denk, H., Riederle, M.: A generalization of a theorem of Pringsheim. J. Approx. Theory 35, 355-363 (1982) · Zbl 0511.46047 · doi:10.1016/0021-9045(82)90023-5
[12] Fair, W.: Noncommutative continued fractions. SIAM J. Math. Anal. 2, 226-232 (1971) · Zbl 0198.16402 · doi:10.1137/0502020
[13] Fair, W.: A convergence theorem for noncommutative continued fractions. J. Approx. Theory 5, 74-76 (1972) · Zbl 0225.40005 · doi:10.1016/0021-9045(72)90030-5
[14] Flajolet, P.: Combinatorial aspects of continued fractions. Discrete Math. 32(2), 125-161 (1980) · Zbl 0445.05014 · doi:10.1016/0012-365X(80)90050-3
[15] Gautschi, W.: Computational aspects of three-term recurrence relations. SIAM Rev. 9, 24-82 (1967) · Zbl 0168.15004 · doi:10.1137/1009002
[16] Grassmann, W.K., Heyman, D.P.: Equilibrium distribution of block-structured Markov chains with repeating rows. J. Appl. Probab. 27(3), 557-576 (1990) · Zbl 0716.60076 · doi:10.2307/3214541
[17] Hanschke, T.: Ein verallgemeinerter Jacobi-Perron-Algorithmus zur Reduktion linearer Differenzengleichungssysteme. Monatshefte Math. 126, 287-311 (1998) · Zbl 0915.39002 · doi:10.1007/BF01299054
[18] Hanschke, T.: A matrix continued fraction algorithm for the multiserver repeated order queue. Math. Comput. Model. 30, 159-170 (1999) · Zbl 1042.60539 · doi:10.1016/S0895-7177(99)00139-9
[19] Hayden, T.L.: Continued fractions in Banach spaces. Rocky Mt. J. Math. 4, 367-370 (1974) · Zbl 0317.47026 · doi:10.1216/RMJ-1974-4-2-367
[20] Jacobi, C.G.J.: Allgemeine Theorie der kettenbruchähnlichen Algorithmen, in welchen jede zahl aus drei vorhergehenden gebildet wird. J. Reine Angew. Math. 69, 29-64 (1868) · JFM 01.0062.01
[21] Levrie, P.: Pringsheim’s theorem for generalized continued fractions. J. Comput. Appl. Math. 14, 439-445 (1986) · Zbl 0596.40003 · doi:10.1016/0377-0427(86)90077-4
[22] Levrie, P.: Pringsheim’s theorem revisited. J. Comput. Appl. Math. 25, 93-104 (1989) · Zbl 0671.40003 · doi:10.1016/0377-0427(89)90078-2
[23] Levrie, P., Bultheel, A.: Matrix continued fractions related to first-order linear recurrence systems. Electron. Trans. Numer. Anal. 4, 46-63 (1996) · Zbl 0860.65128
[24] Miller, K.S.: Linear Difference Equations. Benjamin, New York (1968) · Zbl 0162.13403 · doi:10.2307/2313781
[25] Negoescu, N.: Convergence theorems on non-commutative continued fractions. Math. Rev. Anal. Numer. Theor. Approx. 5, 165-180 (1976) · Zbl 0393.40005
[26] Neuts, M.F.: Matrix-Geometric Solutions in Stochastic Models. John Hopkins University Press, Baltimore (1981) · Zbl 0469.60002
[27] Perron, O.: Grundlagen für eine Theorie des Jacobischen Kettenbruchalgorithmus. Math. Ann. 64(1), 1-76 (1907) · JFM 38.0262.01 · doi:10.1007/BF01449880
[28] Perron, O.: Über die Konvergenz der Jacobi-Kettenalgorithmen mit komplexen elementen. Sitzungsber. Akad. Münch. Math.-Phys. 37, 401-482 (1907) · JFM 38.0262.02
[29] Perron, O.: Über lineare Differenzen- und Differentialgleichungen. Math. Ann. 66, 446-487 (1909) · JFM 40.0364.04 · doi:10.1007/BF01450044
[30] Perron, O.: Zur Theorie der Summengleichungen. Math. Z. 8(1-2), 159-170 (1920) · JFM 47.0377.02 · doi:10.1007/BF01212868
[31] Perron, O.: Die Lehre von den Kettenbrüchen. Teubner, Stuttgart (1954) · Zbl 0056.05901
[32] Perron, O.: Die Lehre von den Kettenbrüchen II. Teubner, Stuttgart (1957) · JFM 43.0283.04
[33] Pfluger, P.: Matrizenkettenbrüche. Dissertation ETH Zürich. Juris Druck + Verlag, Zürich (1966)
[34] Phung-Duc, T.; Masuyama, H.; Kasahara, S.; Takahashi, Y., A simple algorithm for the rate matrices of level-dependent QBD processes, 46-52 (2010)
[35] Pringsheim, A.: Über die Konvergenz unendlicher Kettenbrüche. Sb. Münch. 28, 295-324 (1899) · JFM 29.0178.02
[36] Pringsheim, A.: Über einige Konvergenzkriterien für Kettenbrüche mit komplexen Gliedern. Sb. Münch. 35, 359-380 (1905) · JFM 36.0293.01
[37] Raissouli, M., Kacha, A.: Convergence of matrix continued fractions. Linear Algebra Appl. 320, 115-129 (2000) · Zbl 0961.40003 · doi:10.1016/S0024-3795(00)00196-8
[38] Ramaswami, V.: Notes on Riemann’s zeta-function. J. Lond. Math. Soc. s1-9(3), 165-169 (1934) · JFM 60.0272.03 · doi:10.1112/jlms/s1-9.3.165
[39] Schelling, A.: Convergence theorems for continued fractions in Banach spaces. J. Approx. Theory 86, 72-80 (1996) · Zbl 0858.40007 · doi:10.1006/jath.1996.0055
[40] Seneta, E.: Non-negative Matrices and Markov Chains. Springer, Berlin (1981) · Zbl 1099.60004 · doi:10.1007/0-387-32792-4
[41] Sorokin, V.N., Van Iseghem, J.: Matrix continued fractions. J. Approx. Theory 96, 237-257 (1999) · Zbl 0926.41015 · doi:10.1006/jath.1998.3232
[42] Srivastava, H.M., Choi, J.: Series Associated with the Zeta and Related Functions. Springer, Berlin (2001) · Zbl 1014.33001 · doi:10.1007/978-94-015-9672-5
[43] van der Cruyssen, P.: Linear difference equations and generalized continued fractions. Computing 22, 269-278 (1979) · Zbl 0393.65046 · doi:10.1007/BF02243567
[44] van der Cruyssen, P.: Discussion of algorithms for the computation of generalized continued fractions. J. Comput. Appl. Math. 8, 179-2186 (1982) · Zbl 0514.65005 · doi:10.1016/0771-050X(82)90040-7
[45] Wynn, P.: Continued fractions whose coefficients obey a noncommutative law of multiplication. Arch. Ration. Mech. Anal. 12, 273-312 (1963) · Zbl 0122.30604 · doi:10.1007/BF00281229
[46] Wynn, P.: On some recent developments in the theory and application of continued fractions. J. Soc. Ind. Appl. Math., Ser. B Numer. Anal. 1, 177-197 (1964) · Zbl 0143.17804 · doi:10.1137/0701015
[47] Zhao, H., Zhu, G.: Matrix-valued continued fractions. J. Approx. Theory 120, 136-152 (2003) · Zbl 1034.41017 · doi:10.1016/S0021-9045(02)00016-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.