×

On B-type open-closed Landau-Ginzburg theories defined on Calabi-Yau Stein manifolds. (English) Zbl 1397.32008

Summary: We consider the bulk algebra and topological D-brane category arising from the differential model of the open-closed B-type topological Landau-Ginzburg theory defined by a pair \((X,W)\), where \(X\) is a non-compact Calabi-Yau manifold and \(W\) is a complex-valued holomorphic function. When \(X\) is a Stein manifold (but not restricted to be a domain of holomorphy), we extract equivalent descriptions of the bulk algebra and of the category of topological D-branes which are constructed using only the analytic space associated to \(X\). In particular, we show that the D-brane category is described by projective factorizations defined over the ring of holomorphic functions of \(X\). We also discuss simplifications of the analytic models which arise when \(X\) is holomorphically parallelizable and illustrate these in a few classes of examples.

MSC:

32Q20 Kähler-Einstein manifolds
32Q28 Stein manifolds

References:

[1] Lazaroiu, C. I., On the boundary coupling of topological Landau-Ginzburg models, JHEP, 05, 037, (2005) · doi:10.1088/1126-6708/2005/05/037
[2] Herbst, M.; Lazaroiu, C. I., Localization and traces in open-closed topological Landau-Ginzburg models, JHEP, 05, 044, (2005) · doi:10.1088/1126-6708/2005/05/044
[3] Lazaroiu, C. I., On the structure of open-closed topological field theories in two dimensions, Nucl. Phys. B, 603, 497-530, (2001) · Zbl 0983.81090 · doi:10.1016/S0550-3213(01)00135-3
[4] Moore, G., Segal, G.: D-branes and K-theory in 2D topological field theory. arXiv:hep-th/0609042 · Zbl 0293.46035
[5] Lauda, A. D.; Pfeiffer, H., Open-closed strings: two-dimensional extended TQFTs and Frobenius algebras, Topol. Appl., 155, 623-666, (2008) · Zbl 1158.57038 · doi:10.1016/j.topol.2007.11.005
[6] Babalic, E.M., Doryn, D., Lazaroiu, C.I., Tavakol, M.: Differential models for B-type open-closed topological Landau-Ginzburg theories. Commun. Math. Phys. (2018), 1-66. https://doi.org/10.1007/s00220-018-3137-5. arXiv:1610.09103v3 [math.DG] · Zbl 1403.14045
[7] Doryn, D., Lazaroiu, C.I.: Non-degeneracy of cohomological traces for general Landau-Ginzburg models. arXiv:1802.06261 [math.AG] · Zbl 0910.14020
[8] Vafa, C., Topological Landau-Ginzburg models, Mod. Phys. Lett. A, 6, 337-346, (1991) · Zbl 1020.81886 · doi:10.1142/S0217732391000324
[9] Kapustin, A.; Li, Y., Topological correlators in Landau-Ginzburg models with boundaries, Adv. Theor. Math. Phys., 7, 727-749, (2003) · Zbl 1058.81061 · doi:10.4310/ATMP.2003.v7.n4.a5
[10] Dyckerhoff, T., Compact generators in categories of matrix factorizations, Duke Math. J., 159, 223-274, (2011) · Zbl 1252.18026 · doi:10.1215/00127094-1415869
[11] Dyckerhoff, T.; Murfet, D., The kapustin-Li formula revisited, Adv. Math., 231, 1858-1885, (2012) · Zbl 1269.81168 · doi:10.1016/j.aim.2012.07.021
[12] Polishchuk, A.; Vaintrob, A., Chern characters and Hirzebruch-Riemann-Roch formula for matrix factorizations, Duke Math. J., 161, 1863-1926, (2012) · Zbl 1249.14001 · doi:10.1215/00127094-1645540
[13] Li, C., Li, S., Saito, K.: Primitive forms via polyvector fields. arXiv:1311.1659v3 [math.AG] · Zbl 1181.53076
[14] Shklyarov, D., Calabi-Yau structures on categories of matrix factorizations, J. Geom. Phys., 119, 193-207, (2017) · Zbl 1368.81142 · doi:10.1016/j.geomphys.2017.05.006
[15] Forster, O., Zur theorie der steinschen algebren und moduln, Math. Z., 97, 376-405, (1967) · Zbl 0148.32203 · doi:10.1007/BF01112815
[16] Morye, A. S., Note on the Serre-swan theorem, Math. Nachrichten, 286, 272-278, (2013) · Zbl 1274.14020 · doi:10.1002/mana.200810263
[17] Aprodu, M., Nagel, J.: Koszul cohomology and algebraic geometry. University Lecture Series, vol. 52. American Mathematical Society, Providence (2010) · Zbl 1189.14001
[18] Grauert, H., Remmert, R.: Theory of Stein spaces. Classics in Mathematics. Springer, Berlin, Heidelberg (2004) · Zbl 1137.32001
[19] Bott, R., Tu, L.W.: Differential forms in algebraic topology. In: Graduate Texts in Mathematics, vol. 82. Springer, New York (1982) · Zbl 0496.55001
[20] Weibel, C.: Cyclic homology for schemes. Proceedings of AMS 124(6), 1655-1662 (1996) · Zbl 0855.19002
[21] Grauert, H., Analytische faserungen über holomorph-vollständigen Räumen, Math. Ann., 135, 263-273, (1958) · Zbl 0081.07401 · doi:10.1007/BF01351803
[22] Forsteneric, F.; Larusson, F., Survey of Oka theory, New York J. Math., 17a, 1-28, (2011)
[23] Hamm, H.A., Lê, D.T.: On the Picard group for non-complete algebraic varieties. Singularités Franco-Japonaises, Séminaires et Congrès, vol. 10, pp. 71-86. Soci��té Mathématique de France, Paris (2005) · Zbl 1082.14011
[24] Lelong, P., Gruman, L.: Entire functions of several complex variables. In: Grundlehren der mathematischen Wissenschaften, vol. 282. Springer, Berlin, Heidelberg (1986) · Zbl 0583.32001
[25] Behnke, H., Stein, K.: Entwicklungen analytischer Funktionen auf Riemannschen Flächen. Math. Annalen 120, (1947) · Zbl 1033.52019
[26] Forster, O.: Lectures on Riemann surfaces. In: Graduate Texts in Mathematics, vol. 81. Springer, New York (1981) · Zbl 0475.30002
[27] Helmer, O., The elementary divisor theorem for certain rings without chain conditions, Bull. Amer. Math. Soc., 49, 225-236, (1943) · Zbl 0060.07606 · doi:10.1090/S0002-9904-1943-07886-X
[28] Henriksen, M.: Some remarks on elementary divisor rings, II. Michigan Math. J. 3, 159-163 (1955/56) · Zbl 0073.02301
[29] Alling, N., The valuation theory of meromorphic function fields over open Riemann surfaces, Acta Math., 110, 79-96, (1963) · Zbl 0146.42104 · doi:10.1007/BF02391855
[30] Alling, N.: The valuation theory of meromorphic function fields. In: Proceedings of Symposia in Pure Mathematics, vol. 11, pp. 8-29. American Mathematical Society, Providence (1968) · Zbl 0182.06302
[31] Fuchs, L., Salce, L.: Modules over non-Noetherian domains. Mathematical Surveys and Monographs, vol. 84. American Mathematical Society, Providence (2001) · Zbl 0973.13001
[32] Doryn, D., Lazaroiu, C.I., Tavakol, M.: Elementary matrix factorizations over Bézout domains. arXiv:1801.02369 [math.AC]
[33] Brunner, I.; Herbst, M.; Lerche, W.; Scheuner, B., Landau-Ginzburg realization of open string TFT, JHEP, 11, 043, (2006) · doi:10.1088/1126-6708/2006/11/043
[34] Kapustin, A.; Li, Y., D-branes in Landau-Ginzburg models and algebraic geometry, JHEP, 12, 005, (2003) · doi:10.1088/1126-6708/2003/12/005
[35] Herbst, M.; Lazaroiu, C. I.; Lerche, W., D-brane effective action and tachyon condensation in topological minimal models, JHEP, 03, 078, (2005) · doi:10.1088/1126-6708/2005/03/078
[36] Doryn, D., Lazaroiu, C.I., Tavakol, M.: Matrix factorizations over elementary divisor domains. arXiv:1802.07635 [math.AC] · Zbl 0060.07606
[37] Dimca, A.: Hyperplane arrangements - An introduction. Universitext. Springer (2017) · Zbl 1362.14001
[38] Yuzvinsky, S. A., Orlik-Solomon algebras in algebra and topology, Russ. Math. Surv., 56, 293-364, (2001) · Zbl 1033.52019 · doi:10.1070/RM2001v056n02ABEH000383
[39] Docquier, F.; Grauert, H., Levisches problem und rungescher satz für teilgebiete steinscher mannigfaltigkeiten, Math. Ann., 140, 94-123, (1960) · Zbl 0095.28004 · doi:10.1007/BF01360084
[40] Brieskorn, E., Sur LES groupes de tresses, Lect. Notes in Math., 317, 21-44, (1973) · Zbl 0277.55003 · doi:10.1007/BFb0069274
[41] Orlik, P.; Solomon, L., Combinatorics and topology of complements of hyperplanes, Invent. Math., 56, 167-189, (1980) · Zbl 0432.14016 · doi:10.1007/BF01392549
[42] Weibel, C. A., Pic is a contracted functor, Invent. Math., 103, 351-377, (1991) · Zbl 0794.13008 · doi:10.1007/BF01239518
[43] Forster, O, Some remarks on parallelizable Stein manifolds, Bull. Am. Math. Soc., 73, 712-716, (1967) · Zbl 0163.32102 · doi:10.1090/S0002-9904-1967-11839-1
[44] Kajiura, H.; Saito, K.; Takahashi, A., Matrix factorizations and representations of quivers II: type ADE case, Adv. Math., 211, 327-362, (2007) · Zbl 1167.16011 · doi:10.1016/j.aim.2006.08.005
[45] Birkenhake, C., Lange, H.: Complex abelian varieties. In: Grundlehren der mathematischen Wissenschaften, vol. 302. Springer, Berlin, Heidelberg (2004) · Zbl 1056.14063
[46] Eisenbud, D., Peeva, I.: Minimal free resolutions over complete intersections. Lect. Notes Math. 2152, (2016) · Zbl 1342.13001
[47] Eisenbud, D., Homological algebra on a complete intersection, with an application to group representations, Trans. Am. Math. Soc., 260, 35-64, (1980) · Zbl 0444.13006 · doi:10.1090/S0002-9947-1980-0570778-7
[48] Orlov, D., Triangulated categories of singularities and D-branes in Landau-Ginzburg models, Proc. Steklov Inst. Math., 246, 227-248, (2004) · Zbl 1101.81093
[49] Buchweitz, R.O.: Maximal Cohen-Macaulay modules and Tate cohomology over Gorenstein rings (1986). https://tspace.library.utoronto.ca/handle/1807/16682
[50] Auroux, D., Mirror symmetry and T-duality in the complement of an anticanonical divisor, J. Gökova Geom. Topol. GGT, 1, 51-91, (2007) · Zbl 1181.53076
[51] Hatcher A.: Algebraic Topology. Cambridge University Press, Cambridge (2002) · Zbl 1044.55001
[52] Fritzsche, K., Grauert, H.: From holomorphic functions to complex manifolds. In: Graduate Texts in Mathematics, vol. 213. Springer, New York (2002) · Zbl 1005.32002
[53] Labastida, J. M.F.; Llatas, P. M., Topological matter in two-dimensions, Nucl. Phys. B, 379, 220, (1992) · doi:10.1016/0550-3213(92)90596-4
[54] Hori, K., Vafa, C.: Mirror symmetry. arXiv:hep-th/0002222 · Zbl 1044.14018
[55] Witten, E.; Yau, S. T. (ed.), Mirror manifolds and topological field theory, 120-158, (1992), Hong Kong · Zbl 0834.58013
[56] Morrison, D.; Plesser, R., Towards mirror symmetry as duality for two-dimensional abelian gauge theories, Nucl. Phys. Proc. Suppl., 46, 177-186, (1996) · Zbl 0957.81656 · doi:10.1016/0920-5632(96)00020-5
[57] Witten, E., Phases of \(N\) = 2 theories in two-dimensions, Nucl. Phys. B, 403, 159-222, (1993) · Zbl 0910.14020 · doi:10.1016/0550-3213(93)90033-L
[58] Cho, C.-H.; Oh, Y.-G., Floer cohomology and disc instantons of Lagrangian torus fibers in Fano toric manifolds, Asian J. Math., 10, 773-814, (2006) · Zbl 1130.53055 · doi:10.4310/AJM.2006.v10.n4.a10
[59] Forsteneric, F.: Stein manifolds and holomorphic mappings - The homotopy principle in Complex Analysis. Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 56. Springer, Berlin, Heidelberg (2011) · Zbl 1247.32001
[60] Heal, E. R.; Windham, M. P., Finitely-generated F-algebras with applications to Stein manifolds, Pac. J. Math., 51, 459-465, (1974) · Zbl 0293.46035 · doi:10.2140/pjm.1974.51.459
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.