×

An ideal theoretic proof on monogenity of cyclic sextic fields of prime power conductor. (English) Zbl 1428.11186

It is shown that there exactly three monogenic cyclic sextic fields of prime-power conductor, namely \(\mathbb Q(\zeta_7), \mathbb Q(\zeta_9)\) and the maximal real subfield of \(\mathbb Q(\zeta_{13})\).

MSC:

11R06 PV-numbers and generalizations; other special algebraic numbers; Mahler measure
11R20 Other abelian and metabelian extensions
Full Text: DOI

References:

[1] Ahmad, S.; Nakahara, T.; Husnine, S., Power integral bases for certain pure sextic fields, Int. J. Number Theory, 10, 219-226 (2014)
[2] Akizuki, S.; Ota, K., On power bases for rings of integers of relative Galois extensions, Bull. Lond. Math. Soc., 45, 447-452 (2013) · Zbl 1318.11135
[3] Dedekind, R., Über die Zusammenhang zwischen der Theorie der Ideals und der Theorie der höhren Kongruenzen, Abh.-Akad. Wiss. Goettin., Math. Phys. Kl., 23, 1-23 (1878)
[4] Dummit, D. S.; Kisilevsky, H., Indices in cyclic cubic fields, (Number Theory and Algebra, Collection of Papers Dedicated to H.B. Mann, A.E. Ross and O. Taussky-Todd (1977), Academic Press: Academic Press New York/San Francisco/London), 29-42 · Zbl 0377.12003
[5] Gaál, I., Diophantine Equations and Power Integral BasesNew Computational Methods (2002), Birkhäuser Boston, Inc.: Birkhäuser Boston, Inc. Boston · Zbl 1016.11059
[6] Gras, M.-N., Non monogénéité de l’anneau des entier de extensions cycliques de \(Q\) de degreé premier \(\ell \geqq 5\), J. Number Theory, 23, 347-353 (1986)
[7] Gras, M.-N.; Tanoé, F., Corps biquadratiques monogènes, Manuscripta Math., 86, 63-77 (1995) · Zbl 0816.11058
[8] Hameed, A.; Nakahara, T., Integral bases and relative monogenity of pure octic fields, Bull. Math. Soc. Sci. Math. Roumanie, 58(106), 4, 419-433 (2015) · Zbl 1363.11094
[9] Hasse, H., Vorlesungen über Zahlentheorie (1964), Springer Verlag: Springer Verlag Berlin, Göttingen, Heidelberg, New York, §20 · Zbl 0123.04201
[10] Ireland, K.; Rosen, M., A Classical Introduction to Modren Number Theory (1972), Springer-Verlag: Springer-Verlag New York, Berlin, Heidelberg, London, Paris, Tokyo, Hong Kong, 2nd ed. 1990
[11] N. Khan, On the monogenity of cyclic sextic fields of prime conductor, Thesis, submitted for publication to NUCES, Lahore campus, xiv+82.; N. Khan, On the monogenity of cyclic sextic fields of prime conductor, Thesis, submitted for publication to NUCES, Lahore campus, xiv+82.
[12] Leopoldt, H. W., Über die Hauptordnung der ganzen Elemente eienes abelishen Zahlkörpers, J. Reine Angew., 201, 119-149 (1959) · Zbl 0098.03403
[13] Motoda, Y., Notes on quartic fields, Rep. Fac. Sci. Eng. Saga Univ., Math.. Rep. Fac. Sci. Eng. Saga Univ., Math., Rep. Fac. Sci. Eng. Saga Univ., Math., 37, 1, 1-8 (2008), Appendix and corrigenda to “Notes on Quartic Fields” · Zbl 1158.11344
[14] Motoda, Y.; Nakahara, T.; Shah, S. I.A.; Uehara, T., On a problem of Hasse, RIMS Kôkyûroku Bessatsu, 12, 209-221 (2009) · Zbl 1251.11073
[15] Nakahara, T., On cyclic biquadratic fields related to a problem of Hasse, Monatsh. Math., 94, 125-132 (1982) · Zbl 0482.12001
[16] Nakahara, T., On the indices and integral bases of non-cyclic but abelian biquadratic fields, Arch. Math. (Basel), 41, 504-508 (1983) · Zbl 0513.12005
[17] Nakahara, T., A simple proof of non-monogenesis of the ring of integers in some cyclic fields, (Advances in Number Theory (1993), Kingston Claredon press), 167-173 · Zbl 0797.11089
[18] Narkiewicz, W., Elementary and Analytic Theory of Algebraic Numbers (2007), Springer-Verlag/PWM-Polish Scientific Publishers: Springer-Verlag/PWM-Polish Scientific Publishers Berlin, Heidelberg, New York/Warszawa
[19] Shah, S. I.A., Monogenesis of the ring of integers in a cyclic sextic field of prime conductor, Rep. Fac. Sci. Eng. Saga Univ., Math., 29, 1-10 (2000) · Zbl 0952.11026
[20] Shah, S. I.A.; Nakahara, T., Monogenesis of the rings of integers in certain imaginary abelian fields, Nagoya Math. J., 168, 85-92 (2002) · Zbl 1036.11052
[21] Shimura, G., Arithmetic of Quadratic Forms, Springer Monograph in Mathematics (2010), Springer · Zbl 1202.11026
[22] Yamamura, K., Bibliography on Monogenity of Orders of Algebraic Number Fields (November 2017), National Defense Academy of Japan, updated ed. available on demand [171 papers with MR#/Zbl# are included]
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.