×

Quasiperiodic oscillations from noncommutative inspired black holes. (English) Zbl 1487.83045

Summary: We investigate the dynamics of test particles in the spacetime of noncommutative inspired black holes (NCi BHs). In this context, we first analyse spacetime properties of the NCi BHs together with innermost stable circular orbits (ISCOs) for the particles. It is observed that whereas the ISCO radius does not depend on the NC parameter, the frequencies of the Keplerian orbits and harmonic oscillations are NC parameter dependent. As an application, we consider quasiperiodic oscillations (QPOs) to test effects of the NC gravity around the BHs using twin-peak QPOs frequencies. It is found that the frequency changes even in the presence of the critical NC parameter are smaller than the error in the frequency measurements. The method developed for testing gravity using data from twin peak QPOs may also be applied to other alternate theories of gravity to obtain restrictions on the central BH parameters. We show that the orbits of QPOs lie near ISCO. This assumption may be helpful in solving the ISCO measurement problems in astrophysical observations. In addition, we determine the mass of the central BH in microquasar GRS 1915-105 and the QPO orbit in both the relativistic precession and warped disk models. It is shown that these parameters do not depend on the quantum corrections in the NC gravity. Lastly, we investigate the gravitational capture cross-section for photons and show that the effect of the NC parameter is also less than the error in shadow measurements of the supermassive BH (SMBH) Messier 87 (M87).

MSC:

83C45 Quantization of the gravitational field
83C57 Black holes
16L30 Noncommutative local and semilocal rings, perfect rings
81V80 Quantum optics
81U35 Inelastic and multichannel quantum scattering
70M20 Orbital mechanics
70F15 Celestial mechanics
35B05 Oscillation, zeros of solutions, mean value theorems, etc. in context of PDEs
83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
Full Text: DOI

References:

[1] Akiyama, K., First M87 event horizon telescope results: I. The shadow of the supermassive black hole, Astrophys. J., 875, L1 (2019) · doi:10.3847/2041-8213/ab0ec7
[2] Akiyama, K., First M87 event horizon telescope results: VI. The shadow and mass of the central black hole, Astrophys. J., 875, L6 (2019) · doi:10.3847/2041-8213/ab1141
[3] Abbott, B. P., Observation of gravitational waves from a binary black hole merger, Phys. Rev. Lett., 116 (2016) · doi:10.1103/PhysRevLett.116.061102
[4] Johannsen, T.; Psaltis, D., Testing the no-hair theorem with observations in the electromagnetic spectrum: I. Properties of a quasi-Kerr spacetime, Astrophys. J., 716, 187-197 (2010) · doi:10.1088/0004-637x/716/1/187
[5] Johannsen, T.; Psaltis, D., Metric for rapidly spinning black holes suitable for strong-field tests of the no-hair theorem, Phys. Rev. D, 83 (2011) · doi:10.1103/physrevd.83.124015
[6] Konoplya, R.; Rezzolla, L.; Zhidenko, A., General parametrization of axisymmetric black holes in metric theories of gravity, Phys. Rev. D, 93 (2016) · doi:10.1103/physrevd.93.064015
[7] Rezzolla, L.; Zhidenko, A., New parametrization for spherically symmetric black holes in metric theories of gravity, Phys. Rev. D, 90 (2014) · doi:10.1103/physrevd.90.084009
[8] Hawking, S. W., Black hole explosions?, Nature, 248, 30-31 (1974) · Zbl 1370.83053 · doi:10.1038/248030a0
[9] Kim, Y-W; Lee, H. W.; Myung, Y. S., Entropy bound of local quantum field theory with generalized uncertainty principle, Phys. Lett. B, 673, 293-296 (2009) · doi:10.1016/j.physletb.2009.02.042
[10] Husain, V.; Kothawala, D.; Seahra, S. S., Generalized uncertainty principles and quantum field theory, Phys. Rev. D, 87 (2013) · doi:10.1103/physrevd.87.025014
[11] Bruneton, J-P; Larena, J., Quantum theory of the generalised uncertainty principle, Gen. Relativ. Gravit., 49, 56 (2017) · Zbl 1380.83089 · doi:10.1007/s10714-017-2220-0
[12] Nicolini, P.; Smailagic, A.; Spallucci, E., Noncommutative geometry inspired Schwarzschild black hole, Phys. Lett. B, 632, 547-551 (2006) · Zbl 1247.83113 · doi:10.1016/j.physletb.2005.11.004
[13] Nicolini, P., Noncommutative black holes, the final appeal to quantum gravity: a review, Int. J. Mod. Phys. A, 24, 1229-1308 (2009) · Zbl 1170.83417 · doi:10.1142/s0217751x09043353
[14] Abbas, G.; Ditta, A., Michel accretion onto a non-commutative black hole, New Astron., 84 (2021) · Zbl 1390.83165 · doi:10.1016/j.newast.2020.101508
[15] Kumar, R.; Ghosh, S. G., Accretion onto a noncommutative geometry inspired black hole, Eur. Phys. J. C, 77, 577 (2017) · doi:10.1140/epjc/s10052-017-5141-x
[16] Kalita, S.; Mukhopadhyay, B.; Govindarajan, T. R., Significantly super-Chandrasekhar mass-limit of white dwarfs in noncommutative geometry, Int. J. Mod. Phys. D, 30, 2150034 (2021) · Zbl 1466.83065 · doi:10.1142/s0218271821500346
[17] Ghosh, S. G.; Maharaj, S. D., Noncommutative inspired black holes in regularized 4D Einstein-Gauss-Bonnet theory, Phys. Dark Univ., 31 (2021) · doi:10.1016/j.dark.2021.100793
[18] Modesto, L.; Nicolini, P., Charged rotating noncommutative black holes, Phys. Rev. D, 82 (2010) · doi:10.1103/physrevd.82.104035
[19] Karimabadi, M.; Alavi, S. A.; Yekta, D. M., Non-commutative effects on gravitational measurements, Class. Quantum Grav., 37 (2020) · Zbl 1479.83154 · doi:10.1088/1361-6382/ab7693
[20] Liang, J., Quasinormal modes of a noncommutative-geometry-inspired Schwarzschild black hole, Chin. Phys. Lett., 35 (2018) · doi:10.1088/0256-307x/35/1/010401
[21] Övgün, A.; Sakallı, İ.; Saavedra, J.; Leiva, C., Shadow cast of noncommutative black holes in Rastall gravity, Mod. Phys. Lett. A, 35, 2050163 (2020) · Zbl 1439.83015 · doi:10.1142/s0217732320501631
[22] Wei, S-W; Cheng, P.; Zhong, Y.; Zhou, X-N, Shadow of noncommutative geometry inspired black hole, J. Cosmol. Astropart. Phys. (2015) · doi:10.1088/1475-7516/2015/08/004
[23] Miao, Y-G; Xue, Z.; Zhang, S-J, Tunneling of massive particles from noncommutative inspired Schwarzschild black hole, Gen. Relativ. Gravit., 44, 555-566 (2012) · Zbl 1235.83064 · doi:10.1007/s10714-011-1290-7
[24] Angelini, L.; Stella, L.; Parmar, A. N., The discovery of 0.2 Hz quasi-periodic oscillations in the x-ray flux of the transient 42 second pulsar EXO 2030 + 375, Astrophys. J., 346, 906 (1989) · doi:10.1086/168070
[25] Török, G.; Abramowicz, M. A.; Stuchlík, Z.; Šrámková, E.; Hartkopf, W. I.; Harmanec, P.; Guinan, E. F., QPOs in microquasars: the spin problem, Binary Stars as Critical Tools & Tests in Contemporary Astrophysics, vol 240, 724-726 (2007) · doi:10.1017/S1743921307006473
[26] Rezzolla, L.; Yoshida, S.; Maccarone, T. J.; Zanotti, O., A new simple model for high-frequency quasi-periodic oscillations in black hole candidates, Mon. Not. R. Astron. Soc., 344, L37-L41 (2003) · doi:10.1046/j.1365-8711.2003.07018.x
[27] Rezzolla, L.; Zanotti, O.; Pons, J. A., An improved exact Riemann solver for multi-dimensional relativistic flows, J. Fluid Mech., 479, 199 (2003) · Zbl 1163.76371 · doi:10.1017/s0022112002003506
[28] Rezzolla, L.; Yoshida, S.; Zanotti, O., Oscillations of vertically integrated relativistic tori: I. Axisymmetric modes in a Schwarzschild space-time, Mon. Not. R. Astron. Soc., 344, 978-992 (2003) · doi:10.1046/j.1365-8711.2003.07023.x
[29] Török, G.; Stuchlík, Z., Radial and vertical epicyclic frequencies of Keplerian motion in the field of Kerr naked singularities, Astron. Astrophys., 437, 775-788 (2005) · doi:10.1051/0004-6361:20052825
[30] Stuchlík, Z.; Kotrlová, A.; Török, G., Resonant radii of kHz quasi-periodic oscillations in Keplerian discs orbiting neutron stars, Astron. Astrophys., 525, A82 (2011) · doi:10.1051/0004-6361/201015029
[31] Stuchlík, Z.; Kotrlová, A.; Török, G., Multi-resonance orbital model of high-frequency quasi-periodic oscillations: possible high-precision determination of black hole and neutron star spin, Astron. Astrophys., 552, A10 (2013) · doi:10.1051/0004-6361/201219724
[32] Rayimbaev, J.; Abdujabbarov, A.; Han, W-B, Regular nonminimal magnetic black hole as a source of quasiperiodic oscillations, Phys. Rev. D, 103 (2021) · doi:10.1103/physrevd.103.104070
[33] Rayimbaev, J.; Abdujabbarov, A.; Jamil, M.; Ahmedov, B.; Han, W-B, Dynamics of test particles around renormalization group improved Schwarzschild black holes, Phys. Rev. D, 102 (2020) · doi:10.1103/physrevd.102.084016
[34] Abramowicz, M. A.; Lanza, A.; Spiegel, E. A.; Szuszkiewicz, E., Vortices on accretion disks, Nature, 356, 41-43 (1992) · doi:10.1038/356041a0
[35] Stella, L.; Vietri, M., Lense-thirring precession and quasi-periodic oscillations in low-mass x-ray binaries, Astrophys. J. Lett., 492, L59-L62 (1998) · doi:10.1086/311075
[36] Čadež, A.; Calvani, M.; Kostić, U., On the tidal evolution of the orbits of low-mass satellites around black holes, Astron. Astrophys., 487, 527-532 (2008) · doi:10.1051/0004-6361:200809483
[37] Kostić, U.; Čadež, A.; Calvani, M.; Gomboc, A., Tidal effects on small bodies by massive black holes, Astrophys. Astron., 496, 307-315 (2009) · Zbl 1177.85027 · doi:10.1051/0004-6361/200811059
[38] Abramowicz, M. A.; Kluźniak, W., A precise determination of black hole spin in GRO J1655-40, Astron. Astrophys., 374, L19-L20 (2001) · doi:10.1051/0004-6361:20010791
[39] Bakala, P., Power density spectra of modes of orbital motion in strongly curved space-time: obtaining the observable signal, Mon. Not. R. Astron. Soc., 439, 1933-1939 (2014) · doi:10.1093/mnras/stu076
[40] Karssen, G. D.; Bursa, M.; Eckart, A.; Valencia-S, M.; Dov̆iak, M.; Karas, V.; Horák, J., Bright x-ray flares from Sgr A^*, Mon. Not. R. Astron. Soc., 472, 4422-4433 (2017) · doi:10.1093/mnras/stx2312
[41] Germanà, C., Upper-twin-peak quasiperiodic oscillation in x-ray binaries and the energy from tidal circularization of relativistic orbits, Phys. Rev. D, 96 (2017) · doi:10.1103/physrevd.96.103015
[42] Kato, S.; Fukue, J., Trapped radial oscillations of gaseous disks around a black hole, Publ. Astron. Soc. Japan, 32, 377 (1980)
[43] Okazaki, A. T.; Kato, S.; Fukue, J., Global trapped oscillations of relativistic accretion disks., Publ. Astron. Soc. Japan, 39, 457-473 (1987)
[44] Nowak, M. A.; Wagoner, R. V., Diskoseismology: probing accretion disks: II. G-modes, gravitational radiation reaction, and viscosity, Astrophys. J., 393, 697 (1992) · doi:10.1086/171538
[45] Wagoner, R. V., Relativistic diskoseismology., Phys. Rep., 311, 259-269 (1999) · doi:10.1016/s0370-1573(98)00104-5
[46] Wagoner, R. V.; Silbergleit, A. S.; Ortega-Rodríguez, M., ‘Stable’ quasi-periodic oscillations and black hole properties from diskoseismology, Astrophys. J. Lett., 559, L25-L28 (2001) · doi:10.1086/323655
[47] Silbergleit, A. S.; Wagoner, R. V.; Ortega‐Rodríguez, M., Relativistic diskoseismology: II. Analytical results for c‐modes, Astrophys. J., 548, 335-347 (2001) · doi:10.1086/318659
[48] Wang, D. H.; Chen, L.; Zhang, C. M.; Lei, Y. J.; Qu, J. L.; Song, L. M., Investigation of the emission radii of kHz QPOs for the accreting millisecond x-ray pulsars, Atoll and Z sources, Mon. Not. R. Astron. Soc., 454, 1231-1237 (2015) · doi:10.1093/mnras/stv1999
[49] Ingram, A.; Done, C., A physical interpretation of the variability power spectral components in accreting neutron stars, Mon. Not. R. Astron. Soc., 405, 2447-2452 (2010) · doi:10.1111/j.1365-2966.2010.16614.x
[50] Fragile, P. C.; Straub, O.; Blaes, O., High-frequency and type-C QPOs from oscillating, precessing hot, thick flow, Mon. Not. R. Astron. Soc., 461, 1356-1362 (2016) · doi:10.1093/mnras/stw1428
[51] Stuchlík, Z.; Kotrlová, A.; Török, G., Resonant switch model of twin peak HF QPOs applied to the source 4U 1636-53, Acta Astron., 62, 389-407 (2012)
[52] Ortega-Rodríguez, M.; Solís-Sánchez, H.; Álvarez-García, L.; Dodero-Rojas, E., On twin peak quasi-periodic oscillations resulting from the interaction between discoseismic modes and turbulence in accretion discs around black holes, Mon. Not. R. Astron. Soc., 492, 1755-1760 (2020) · doi:10.1093/mnras/stz3541
[53] Maselli, A.; Pappas, G.; Pani, P.; Gualtieri, L.; Motta, S.; Ferrari, V.; Stella, L., A new method to constrain neutron star structure from quasi-periodic oscillations, Astrophys. J., 899, 139 (2020) · doi:10.3847/1538-4357/ab9ff4
[54] Ingram, A.; van der Klis, M.; Middleton, M.; Done, C.; Altamirano, D.; Heil, L.; Uttley, P.; Axelsson, M., A quasi-periodic modulation of the iron line centroid energy in the black hole binary H1743-322, Mon. Not. R. Astron. Soc., 461, 1967-1980 (2016) · doi:10.1093/mnras/stw1245
[55] Török, G.; Goluchová, K.; Šrámková, E.; Urbanec, M.; Straub, O., Time-scale of twin-peak quasi-periodic oscillations and mass of accreting neutron stars, Mon. Not. R. Astron. Soc., 488, 3896-3903 (2019) · doi:10.1093/mnras/stz1929
[56] Swank, J.; Kaaret, P.; Lamb, F. K.; Swank, J. H., Quasi-periodic oscillations from low-mass x-ray binaries with neutron stars, X-Ray Timing 2003: Rossi and Beyond, vol 714, 357-364 (2004) · doi:10.1063/1.1781055
[57] Bambi, C., Black Holes: A Laboratory for Testing Strong Gravity (2017), Berlin: Springer, Berlin · Zbl 1369.83002
[58] Stuchlík, Z.; Kološ, M., Mass of intermediate black hole in the source M82 X-1 restricted by models of twin high-frequency quasi-periodic oscillations, Mon. Not. R. Astron. Soc., 451, 2575-2588 (2015) · doi:10.1093/mnras/stv1120
[59] Török, G.; Kotrlová, A.; Šrámková, E.; Stuchlík, Z., Confronting the models of 3:2 quasiperiodic oscillations with the rapid spin of the microquasar grs 1915+105, Astron. Astrophys., 531, A59 (2011) · doi:10.1051/0004-6361/201015549
[60] Rayimbaev, J.; Tadjimuratov, P.; Abdujabbarov, A.; Ahmedov, B.; Khudoyberdieva, M., Dynamics of test particles and twin peaks QPOs around regular black holes in modified gravity, Galaxies, 9, 75 (2021) · doi:10.3390/galaxies9040075
[61] Stuchlík, Z.; Kološ, M., Models of quasi-periodic oscillations related to mass and spin of the GRO J1655-40 black hole, Astron. Astrophys., 586, A130 (2016) · doi:10.1051/0004-6361/201526095
[62] Stella, L.; Vietri, M.; Morsink, S. M., Correlations in the quasi-periodic oscillation frequencies of low-mass x-ray binaries and the relativistic precession model, Astrophys. J., 524, L63-L66 (1999) · doi:10.1086/312291
[63] Kato, S., Resonant excitation of disk oscillations by warps: a model of kHz QPOs, Publ. Astron. Soc. Japan, 56, 905-922 (2004) · doi:10.1093/pasj/56.5.905
[64] Kato, S., Frequency correlation of QPOs based on a resonantly excited disk-oscillation model, Publ. Astron. Soc. Japan, 60, 889 (2008) · doi:10.1093/pasj/60.4.889
[65] Toshmatov, B.; Malafarina, D.; Dadhich, N., Harmonic oscillations of neutral particles in the γ metric, Phys. Rev. D, 100 (2019) · doi:10.1103/physrevd.100.044001
[66] Rayimbaev, J.; Shaymatov, S.; Jamil, M., Dynamics and epicyclic motions of particles around the Schwarzschild-de Sitter black hole in perfect fluid dark matter, Eur. Phys. J. C, 81, 699 (2021) · doi:10.1140/epjc/s10052-021-09488-9
[67] Tamburini, F.; Thidé, B.; Valle, M. D., Measurement of the spin of the M87 black hole from its observed twisted light, Mon. Not. R. Astron. Soc. Lett., 492, L22-L27 (2020) · doi:10.1093/mnrasl/slz176
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.