×

Chaos enhancement in large-spin chains. (English) Zbl 07903670

Summary: We study the chaotic properties of a large-spin XXZ chain with onsite disorder and a small number of excitations above the fully polarized state. We show that while the classical limit, which is reached for large spins, is chaotic, enlarging the spin suppresses quantum chaos features. We examine ways to facilitate chaos by introducing additional terms to the Hamiltonian. Interestingly, perturbations that are diagonal in the basis of product states in the \(z\)-direction do not lead to significant enhancement of chaos, while off-diagonal perturbations restore chaoticity for large spins, so that only three excitations are required to achieve strong level repulsion and ergodic eigenstates.

MSC:

81Qxx General mathematical topics and methods in quantum theory
81Vxx Applications of quantum theory to specific physical systems
37Nxx Applications of dynamical systems

References:

[1] G. Casati, F. Valz-Gris and I. Guarnieri, On the connection between quantization of non-integrable systems and statistical theory of spectra, Lett. Nuovo Cimento 28, 279 (1980), doi:10.1007/bf02798790. · doi:10.1007/bf02798790
[2] O. Bohigas, M. J. Giannoni and C. Schmit, Characterization of chaotic quantum spectra and universality of level fluctuation laws, Phys. Rev. Lett. 52, 1 (1984), doi:10.1103/physrevlett.52.1. · Zbl 1119.81326 · doi:10.1103/physrevlett.52.1
[3] H.-J. Stockmann, Quantum chaos, Cambridge University Press, Cambridge, UK, ISBN 9780511524622 (2007), doi:10.1017/CBO9780511524622. · Zbl 0940.81019 · doi:10.1017/CBO9780511524622
[4] F. Haake, Quantum signatures of chaos, Springer Berlin, Heidelberg, Germany, ISBN 9783642054280 (2001), doi:10.1007/978-3-642-05428-0. · Zbl 1209.81002 · doi:10.1007/978-3-642-05428-0
[5] L. E. Reichl, The transition to chaos, Springer, New York, USA, ISBN 9781475743524 (1994), doi:10.1007/978-1-4757-4352-4. · doi:10.1007/978-1-4757-4352-4
[6] V. Zelevinsky, B. A. Brown, N. Frazier and M. Horoi, The nuclear shell model as a testing ground for many-body quantum chaos, Phys. Rep. 276, 85 (1996), doi:10.1016/s0370-1573(96)00007-5. · doi:10.1016/s0370-1573(96)00007-5
[7] F. Borgonovi, F. M. Izrailev, L. F. Santos and V. G. Zelevinsky, Quantum chaos and thermalization in isolated systems of interacting particles, Phys. Rep. 626, 1 (2016), doi:10.1016/j.physrep.2016.02.005. · Zbl 1357.81103 · doi:10.1016/j.physrep.2016.02.005
[8] L. D’Alessio, Y. Kafri, A. Polkovnikov and M. Rigol, From quantum chaos and eigenstate thermalization to statistical mechanics and thermodynamics, Adv. Phys. 65, 239 (2016), doi:10.1080/00018732.2016.1198134. · doi:10.1080/00018732.2016.1198134
[9] L. D’Alessio and M. Rigol, Long-time behavior of isolated periodically driven interacting lattice systems, Phys. Rev. X 4, 041048 (2014), doi:10.1103/PhysRevX.4.041048. · doi:10.1103/PhysRevX.4.041048
[10] A. Lazarides, A. Das and R. Moessner, Fate of many-body localization under periodic driv-ing, Phys. Rev. Lett. 115, 030402 (2015), doi:10.1103/PhysRevLett.115.030402. · doi:10.1103/PhysRevLett.115.030402
[11] D. S. Bhakuni, L. F. Santos and Y. Bar Lev, Suppression of heating by long-range interactions in periodically driven spin chains, Phys. Rev. B 104, L140301 (2021), doi:10.1103/PhysRevB.104.L140301. · doi:10.1103/PhysRevB.104.L140301
[12] R. Nandkishore and D. A. Huse, Many-body localization and thermalization in quantum statistical mechanics, Annu. Rev. Condens. Matter Phys. 6, 15 (2015), doi:10.1146/annurev-conmatphys-031214-014726. · doi:10.1146/annurev-conmatphys-031214-014726
[13] D. A. Abanin and Z. Papić, Recent progress in many-body localization, Ann. Phys. 529, 1700169 (2017), doi:10.1002/andp.201700169. · Zbl 1370.81225 · doi:10.1002/andp.201700169
[14] K. Agarwal, E. Altman, E. Demler, S. Gopalakrishnan, D. A. Huse and M. Knap, Rare-region effects and dynamics near the many-body localization transition, Ann. Phys. 529, 1600326 (2017), doi:10.1002/andp.201600326. · doi:10.1002/andp.201600326
[15] D. J. Luitz and Y. Bar Lev, The ergodic side of the many-body localization transition, Ann. Phys. 529, 1600350 (2017), doi:10.1002/andp.201600350. · Zbl 1370.81238 · doi:10.1002/andp.201600350
[16] B. Swingle, G. Bentsen, M. Schleier-Smith and P. Hayden, Measuring the scrambling of quantum information, Phys. Rev. A 94, 040302 (2016), doi:10.1103/PhysRevA.94.040302. · doi:10.1103/PhysRevA.94.040302
[17] M. Gärttner, J. G. Bohnet, A. Safavi-Naini, M. L. Wall, J. J. Bollinger and A. M. Rey, Measuring out-of-time-order correlations and multiple quantum spectra in a trapped-ion quantum magnet, Nat. Phys. 13, 781 (2017), doi:10.1038/nphys4119. · doi:10.1038/nphys4119
[18] F. Borgonovi, F. M. Izrailev and L. F. Santos, Exponentially fast dynamics of chaotic many-body systems, Phys. Rev. E 99, 010101 (2019), doi:10.1103/physreve.99.010101. · doi:10.1103/physreve.99.010101
[19] C. M. Sánchez, A. K. Chattah, K. X. Wei, L. Buljubasich, P. Cappellaro and H. M. Pastawski, Perturbation independent decay of the Loschmidt echo in a many-body system, Phys. Rev. Lett. 124, 030601 (2020), doi:10.1103/PhysRevLett.124.030601. · doi:10.1103/PhysRevLett.124.030601
[20] M. Niknam, L. F. Santos and D. G. Cory, Sensitivity of quantum information to environment perturbations measured with a nonlocal out-of-time-order correlation function, Phys. Rev. Res. 2, 013200 (2020), doi:10.1103/PhysRevResearch.2.013200. · doi:10.1103/PhysRevResearch.2.013200
[21] T. Guhr, A. Müller-Groeling and H. A. Weidenmüller, Random-matrix theories in quan-tum physics: Common concepts, Phys. Rep. 299, 189 (1998), doi:10.1016/S0370-1573(97)00088-4. · doi:10.1016/S0370-1573(97)00088-4
[22] Č. Lozej, G. Casati and T. Prosen, Quantum chaos in triangular billiards, Phys. Rev. Res. 4, 013138 (2022), doi:10.1103/physrevresearch.4.013138. · doi:10.1103/physrevresearch.4.013138
[23] J. Wang, G. Benenti, G. Casati and W.-G. Wang, Statistical and dynamical properties of the quantum triangle map, J. Phys. A: Math. Theor. 55, 234002 (2022), doi:10.1088/1751-8121/ac6a93. · Zbl 1507.81107 · doi:10.1088/1751-8121/ac6a93
[24] M. Akila, D. Waltner, B. Gutkin, P. Braun and T. Guhr, Semiclassical identification of periodic orbits in a quantum many-body system, Phys. Rev. Lett. 118, 164101 (2017), doi:10.1103/PhysRevLett.118.164101. · doi:10.1103/PhysRevLett.118.164101
[25] Y. Avishai, J. Richert and R. Berkovits, Level statistics in a Heisenberg chain with random magnetic field, Phys. Rev. B 66, 052416 (2002), doi:10.1103/PhysRevB.66.052416. · doi:10.1103/PhysRevB.66.052416
[26] J. Richter, N. Casper, W. Brenig and R. Steinigeweg, Magnetization dynamics in clean and disordered spin-1 XXZ chains, Phys. Rev. B 100, 144423 (2019), doi:10.1103/physrevb.100.144423. · doi:10.1103/physrevb.100.144423
[27] L. F. Santos, F. Pérez-Bernal and E. J. Torres-Herrera, Speck of chaos, Phys. Rev. Res. 2, 043034 (2020), doi:10.1103/physrevresearch.2.043034. · doi:10.1103/physrevresearch.2.043034
[28] A. S. de Wijn, B. Hess and B. V. Fine, Largest Lyapunov exponents for lat-tices of interacting classical spins, Phys. Rev. Lett. 109, 034101 (2012), doi:10.1103/physrevlett.109.034101. · doi:10.1103/physrevlett.109.034101
[29] T. A. Elsayed and B. V. Fine, Sensitivity to small perturbations in systems of large quantum spins, Phys. Scr. 014011 (2015), doi:10.1088/0031-8949/2015/t165/014011. · doi:10.1088/0031-8949/2015/t165/014011
[30] M. Schiulaz, M. Távora and L. F. Santos, From few-to many-body quantum systems, Quan-tum Sci. Technol. 3, 044006 (2018), doi:10.1088/2058-9565/aad913. · doi:10.1088/2058-9565/aad913
[31] G. Zisling, L. Santos and Y. Bar Lev, How many particles make up a chaotic many-body quantum system?, SciPost Phys. 10, 088 (2021), doi:10.21468/SciPostPhys.10.4.088. · doi:10.21468/SciPostPhys.10.4.088
[32] N. Mirkin and D. Wisniacki, Quantum chaos, equilibration, and control in extremely short spin chains, Phys. Rev. E 103, L020201 (2021), doi:10.1103/PhysRevE.103.L020201. · doi:10.1103/PhysRevE.103.L020201
[33] L. F. Santos, G. Rigolin and C. O. Escobar, Entanglement versus chaos in disordered spin chains, Phys. Rev. A 69, 042304 (2004), doi:10.1103/physreva.69.042304. · doi:10.1103/physreva.69.042304
[34] L. F. Santos, Integrability of a disordered Heisenberg spin-1/2 chain, J. Phys. A: Math. Gen. 37, 4723 (2004), doi:10.1088/0305-4470/37/17/004. · Zbl 1047.82007 · doi:10.1088/0305-4470/37/17/004
[35] T. A. Elsayed, B. Hess and B. V. Fine, Signatures of chaos in time series gener-ated by many-spin systems at high temperatures, Phys. Rev. E 90, 022910 (2014), doi:10.1103/PhysRevE.90.022910. · doi:10.1103/PhysRevE.90.022910
[36] L. Petzold, Automatic selection of methods for solving stiff and nonstiff systems of ordinary differential equations, SIAM J. Sci. Stat. Comput. 4, 1 (1983), doi:10.1137/0904010. · Zbl 0518.65051 · doi:10.1137/0904010
[37] P. Pechukas, Distribution of energy eigenvalues in the irregular spectrum, Phys. Rev. Lett. 51, 943 (1983), doi:10.1103/PhysRevLett.51.943. · doi:10.1103/PhysRevLett.51.943
[38] P. Pechukas, Remarks on “quantum chaos”, J. Phys. Chem. 88, 4823 (1984), doi:10.1021/j150665a006. · doi:10.1021/j150665a006
[39] A. Peres, Ergodicity and mixing in quantum theory. I, Phys. Rev. A 30, 504 (1984), doi:10.1103/PhysRevA.30.504. · doi:10.1103/PhysRevA.30.504
[40] A. Peres, Stability of quantum motion in chaotic and regular systems, Phys. Rev. A 30, 1610 (1984), doi:10.1103/PhysRevA.30.1610. · doi:10.1103/PhysRevA.30.1610
[41] M. Feingold, N. Moiseyev and A. Peres, Ergodicity and mixing in quantum theory. II, Phys. Rev. A 30, 509 (1984), doi:10.1103/PhysRevA.30.509. · doi:10.1103/PhysRevA.30.509
[42] M. Feingold, N. Moiseyev and A. Peres, Classical limit of quantum chaos, Chem. Phys. Lett. 117, 344 (1985), doi:10.1016/0009-2614(85)85241-6. · doi:10.1016/0009-2614(85)85241-6
[43] M. Feingold and A. Peres, Distribution of matrix elements of chaotic systems, Phys. Rev. A 34, 591 (1986), doi:10.1103/PhysRevA.34.591. · doi:10.1103/PhysRevA.34.591
[44] J. M. Deutsch, Quantum statistical mechanics in a closed system, Phys. Rev. A 43, 2046 (1991), doi:10.1103/PhysRevA.43.2046. · doi:10.1103/PhysRevA.43.2046
[45] M. Srednicki, Chaos and quantum thermalization, Phys. Rev. E 50, 888 (1994), doi:10.1103/PhysRevE.50.888. · doi:10.1103/PhysRevE.50.888
[46] M. Srednicki, Thermal fluctuations in quantized chaotic systems, J. Phys. A: Math. Gen. 29, L75 (1996), doi:10.1088/0305-4470/29/4/003. · Zbl 0921.58060 · doi:10.1088/0305-4470/29/4/003
[47] M. Srednicki, The approach to thermal equilibrium in quantized chaotic systems, J. Phys. A: Math. Gen. 32, 1163 (1999), doi:10.1088/0305-4470/32/7/007. · Zbl 1055.81561 · doi:10.1088/0305-4470/32/7/007
[48] M. Rigol, V. Dunjko and M. Olshanii, Thermalization and its mechanism for generic isolated quantum systems, Nature 452, 854 (2008), doi:10.1038/nature06838. · doi:10.1038/nature06838
[49] W. Beugeling, R. Moessner and M. Haque, Off-diagonal matrix elements of lo-cal operators in many-body quantum systems, Phys. Rev. E 91, 012144 (2015), doi:10.1103/PhysRevE.91.012144. · doi:10.1103/PhysRevE.91.012144
[50] T. LeBlond, K. Mallayya, L. Vidmar and M. Rigol, Entanglement and matrix elements of observables in interacting integrable systems, Phys. Rev. E 100, 062134 (2019), doi:10.1103/PhysRevE.100.062134. · doi:10.1103/PhysRevE.100.062134
[51] I. M. Khaymovich, M. Haque and P. A. McClarty, Eigenstate thermalization, random matrix theory, and behemoths, Phys. Rev. Lett. 122, 070601 (2019), doi:10.1103/physrevlett.122.070601. · doi:10.1103/physrevlett.122.070601
[52] P. Łydżba, Y. Zhang, M. Rigol and L. Vidmar, Single-particle eigenstate thermaliza-tion in quantum-chaotic quadratic Hamiltonians, Phys. Rev. B 104, 214203 (2021), doi:10.1103/physrevb.104.214203. · doi:10.1103/physrevb.104.214203
[53] L. Foini and J. Kurchan, Eigenstate thermalization hypothesis and out of time order corre-lators, Phys. Rev. E 99, 042139 (2019), doi:10.1103/PhysRevE.99.042139. · doi:10.1103/PhysRevE.99.042139
[54] J. Richter, A. Dymarsky, R. Steinigeweg and J. Gemmer, Eigenstate thermalization hypoth-esis beyond standard indicators: Emergence of random-matrix behavior at small frequencies, Phys. Rev. E 102, 042127 (2020), doi:10.1103/PhysRevE.102.042127. · doi:10.1103/PhysRevE.102.042127
[55] M. Brenes, S. Pappalardi, M. T. Mitchison, J. Goold and A. Silva, Out-of-time-order cor-relations and the fine structure of eigenstate thermalization, Phys. Rev. E 104, 034120 (2021), doi:10.1103/PhysRevE.104.034120. · doi:10.1103/PhysRevE.104.034120
[56] V. Oganesyan and D. A. Huse, Localization of interacting fermions at high temperature, Phys. Rev. B 75, 155111 (2007), doi:10.1103/PhysRevB.75.155111. · doi:10.1103/PhysRevB.75.155111
[57] Y. Y. Atas, E. Bogomolny, O. Giraud and G. Roux, Distribution of the ratio of consecu-tive level spacings in random matrix ensembles, Phys. Rev. Lett. 110, 084101 (2013), doi:10.1103/PhysRevLett.110.084101. · doi:10.1103/PhysRevLett.110.084101
[58] Á. L. Corps and A. Relaño, Distribution of the ratio of consecutive level spacings for different symmetries and degrees of chaos, Phys. Rev. E 101, 022222 (2020), doi:10.1103/PhysRevE.101.022222. · doi:10.1103/PhysRevE.101.022222
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.