×

Renormalized oscillation theory for linear Hamiltonian systems on \([0, 1]\) via the Maslov index. (English) Zbl 07818470

Summary: Working with a general class of regular linear Hamiltonian systems, we show that renormalized oscillation results can be obtained in a natural way through consideration of the Maslov index associated with appropriately chosen paths of Lagrangian subspaces of \(\mathbb{C}^{2n}\). We verify that our applicability class includes Dirac and Sturm-Liouville systems, as well as a system arising from differential-algebraic equations for which the spectral parameter appears nonlinearly.

MSC:

37J51 Action-minimizing orbits and measures for finite-dimensional Hamiltonian and Lagrangian systems; variational principles; degree-theoretic methods
53D12 Lagrangian submanifolds; Maslov index
34C10 Oscillation theory, zeros, disconjugacy and comparison theory for ordinary differential equations

References:

[1] Atkinson, FV; Langer, H.; Mennicken, R.; Shkalikov, AA, The essential spectrum of some matrix operators, Math. Nachr., 167, 5-20, 1994 · Zbl 0831.47001 · doi:10.1002/mana.19941670102
[2] Arnol’d, VI, Characteristic class entering in quantization conditions, Funct. Anal. Appl., 1, 1-14, 1967 · Zbl 0175.20303 · doi:10.1007/BF01075861
[3] Arnol’d, VI, The complex Lagrangian Grassmannian, Funct. Anal. Appl., 34, 208-210, 2000 · Zbl 0996.53051 · doi:10.1007/BF02482410
[4] Booss-Bavnbek, B., Zhu, C.: The Maslov index in symplectic Banach spaces. Mem. Am. Math. Soc. 252(1201) (2018)
[5] Booss-Bavnbek, B.; Furutani, K., The Maslov index: a functional analytical definition and the spectral flow formula, Tokyo J. Math., 21, 1-34, 1998 · Zbl 0932.37063 · doi:10.3836/tjm/1270041982
[6] Beyn, W-J; Latushkin, Y.; Rottmann-Matthes, J., Finding eigenvalues of holomorphic Fredholm operator pencils using boundary value problems and contour integrals, Integr. Equ. Oper. Theory, 78, 155-211, 2014 · Zbl 1318.47021 · doi:10.1007/s00020-013-2117-6
[7] Bott, R., On the iteration of closed geodesics and the Sturm intersection theory, Commun. Pure Appl. Math., 9, 171-206, 1956 · Zbl 0074.17202 · doi:10.1002/cpa.3160090204
[8] Cappell, S.; Lee, R.; Miller, E., On the Maslov index, Commun. Pure Appl. Math., 47, 121-186, 1994 · Zbl 0805.58022 · doi:10.1002/cpa.3160470202
[9] Elyseeva, J.: Relative oscillation theory for linear Hamiltonian systems with nonlinear dependence on the spectral parameter, Preprint (2021)
[10] Furutani, K., Fredholm-Lagrangian-Grassmannian and the Maslov index, J. Geom. Phys., 51, 269-331, 2004 · Zbl 1076.53100 · doi:10.1016/j.geomphys.2004.04.001
[11] Gesztesy, F.; Simon, B.; Teschl, G., Zeros of the Wronskian and renormalized oscillation theory, Am. J. Math., 118, 571-594, 1996 · Zbl 0858.47027 · doi:10.1353/ajm.1996.0024
[12] Gesztesy, F.; Zinchenko, M., Renormalized oscillation theory for Hamiltonian systems, Adv. Math., 311, 569-597, 2017 · Zbl 1381.34050 · doi:10.1016/j.aim.2017.03.005
[13] Howard, P.; Jung, S.; Kwon, B., The Maslov index and spectral counts for Hamiltonian systems on [0,1], J. Dyn. Differ. Equ., 30, 1703-1720, 2018 · Zbl 1404.37064 · doi:10.1007/s10884-017-9625-z
[14] Howard, P.; Latushkin, Y.; Sukhtayev, A., The Maslov index for Lagrangian pairs on \({\mathbb{R}}^{2n} \), J. Math. Anal. Appl., 451, 794-821, 2017 · Zbl 1377.35073 · doi:10.1016/j.jmaa.2017.02.022
[15] Hu, X.; Portaluri, A., Index theory for heteroclinic orbits of Hamiltonian systems, Calc. Var., 56, 6, 167, 2017 · Zbl 1390.53089 · doi:10.1007/s00526-017-1259-9
[16] Howard, P.; Sukhtayev, A., The Maslov and Morse indices for Schrödinger operators on \([0, 1]\), J. Differ. Equ., 260, 4499-4559, 2016 · Zbl 1337.47064 · doi:10.1016/j.jde.2015.11.020
[17] Jones, CKRT; Latushkin, Y.; Sukhtaiev, S., Counting spectrum via the Maslov index for one dimensional \(\theta \)-periodic Schrödinger operators, Proc. AMS, 145, 363-377, 2017 · Zbl 1353.53080 · doi:10.1090/proc/13192
[18] Kato, T.: Perturbation Theory for Linear Operators. Springer (1980) · Zbl 0435.47001
[19] Kollár, R.; Miller, PD, Graphical Krein signature theory and Evans-Krein functions, SIAM Rev., 56, 73-123, 2014 · Zbl 1300.47078 · doi:10.1137/120891423
[20] Kapitula, T., Promislow, K.: Spectral and Dynamic Stability of Nonlinear Waves, Applied Mathematical Sciences 185. Springer, New York (2013) · Zbl 1297.37001
[21] Kratz, W.: Quadratic Functionals in Variational Analysis and Control Theory, Mathematical Topics 6, Wiley-VCH (1995) · Zbl 0842.49001
[22] Kostrykin, V.; Schrader, R., Kirchhoff’s rule for quantum wires, J. Phys. A: Math. Gen., 32, 595-630, 1999 · Zbl 0928.34066 · doi:10.1088/0305-4470/32/4/006
[23] Krall, A.M.: Hilbert Space, Boundary Value Problems and Orthogonal Polynomials. Birkhäuser Verlag (2002) · Zbl 1033.34080
[24] Latushkin, Y., Sukhtayev, A.: The Evans function and the Weyl-Titchmarsh function. Discrete Contin. Dyn. Syst. Ser. S 5, 939-970 (2012) · Zbl 1250.35059
[25] Phillips, J., Selfadjoint Fredholm operators and spectral flow, Can. Math. Bull., 39, 460-467, 1996 · Zbl 0878.19001 · doi:10.4153/CMB-1996-054-4
[26] Piziak, R.; Odell, PL; Hahn, R., Constructing projections on sums and intersections, Comput. Math. Appl., 37, 67-74, 1999 · Zbl 0936.65053
[27] Robbin, J.; Salamon, D., The Maslov index for paths, Topology, 32, 827-844, 1993 · Zbl 0798.58018 · doi:10.1016/0040-9383(93)90052-W
[28] Schulz-Baldes, H., Rotation numbers for Jacobi matrices with matrix entries, Math. Phys. Electron. J., 13, 5, 40, 2007 · Zbl 1141.15024
[29] Schulz-Baldes, H., Sturm intersection theory for periodic Jacobi matrices and linear Hamiltonian systems, Linear Algebra Appl., 436, 3, 498-515, 2012 · Zbl 1232.15010 · doi:10.1016/j.laa.2011.06.052
[30] Teschl, G., Oscillation theory and renormalized oscillation theory for Jacobi operators, J. Differ. Equ., 129, 532-558, 1996 · Zbl 0866.39002 · doi:10.1006/jdeq.1996.0126
[31] Teschl, G., Renormalized oscillation theory for Dirac operators, Proc. AMS, 126, 1685-1695, 1998 · Zbl 0894.34080 · doi:10.1090/S0002-9939-98-04310-X
[32] Weidmann, J., Spectral Theory of Ordinary Differential Operators, 1987, Berlin: Springer, Berlin · Zbl 0647.47052 · doi:10.1007/BFb0077960
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.