×

Finiteness of leaps in the sense of Hasse-Schmidt of unibranch curves in positive characteristic. (English) Zbl 1537.13007

According to the abstract, the authors prove “that the set of leaps of the chain of \(m\)-integrable derivations of a curve \(X\) over a perfect field with geometrically unibranch singularities is finite. This result is a consequence of an affirmative answer to Seidenberg’s question of extending, in positive characteristic, Hasse-Schmidt derivations of finite length of the local rings of \(X\) to their integral closures.” The last section of the paper is devoted to some questions about the relationship between leaps and other positive characteristic invariants, as F-threshold or more generally F-jumping numbers. They mention – and give appropriate references for the proofs of the statements – that F-jumping numbers do not change when taking the integral closure of an ideal, but leaps may do. In the case of unibranch curves, they also ask for the relationship of the set of leaps with the ramification of the generic plane projection, or with invariants associated with the motivic series in positive characteristic. They also say that a main obstacle in the theory is the lacking of an algorithm computing the leaps of a given commutative (computable) algebra. The last sentence of the paper is that the “theory of leaps” is still in a very early stage.

MSC:

13A35 Characteristic \(p\) methods (Frobenius endomorphism) and reduction to characteristic \(p\); tight closure
13N15 Derivations and commutative rings
14B05 Singularities in algebraic geometry
14H20 Singularities of curves, local rings

References:

[1] Benito, A.; Faber, E.; Smith, K. E., Measuring singularities with Frobenius: the basics, 57-97 · Zbl 1274.13007
[2] Benito, A.; Piltant, O.; Reguera, A. J., Small irreducible components of arc spaces in positive characteristic. J. Pure Appl. Algebra, 11 (2022) · Zbl 1493.13014
[3] Bhatt, B., Algebraization and Tannaka duality. Camb. J. Math., 4, 403-461 (2016) · Zbl 1356.14006
[4] Blickle, M.; Mustaţǎ, M.; Smith, K. E., Discreteness and rationality of F-thresholds. Mich. Math. J., 43-61 (2008) · Zbl 1177.13013
[5] Brown, W. C., On the embedding of derivations of finite rank into derivations of infinite rank. Osaka J. Math., 381-389 (1978) · Zbl 0422.13007
[6] Chambert-Loir, A.; Nicaise, J.; Sebag, J., Motivic Integration. Progress in Mathematics (2018), Birkhäuser/Springer: Birkhäuser/Springer New York · Zbl 06862764
[7] Denef, J.; Loeser, F., Definable sets, motives and p-adic integrals. J. Am. Math. Soc., 2, 429-469 (2001) · Zbl 1040.14010
[8] Gillet, H., Differential algebra. A scheme theory approach, 95-123 · Zbl 1051.13011
[9] Grothendieck, A., Éléments de Géométrie Algébrique (Rédigés avec la collaboration de Jean Dieudonné) I. Le langage des schémas. Inst. Hautes Études Sci. Publ. Math. (1960)
[10] Grothendieck, A., Éléments de Géométrie Algébrique (Rédigés avec la collaboration de Jean Dieudonné) IV. Étude locale des schémas et des morphismes de schémas, Seconde partie. Inst. Hautes Études Sci. Publ. Math. (1965) · Zbl 0135.39701
[11] Hartshorne, R., Algebraic Geometry. GTM (1977), Springer: Springer New York · Zbl 0367.14001
[12] Hasse, H.; Schmidt, F. K., Noch eine Begründung der Theorie der höheren Differrentialquotienten in einem algebraischen Funktionenkörper einer Unbestimmten. J. Reine Angew. Math., 215-237 (1937) · JFM 63.0098.01
[13] Matsumura, H., Integrable derivations. Nagoya Math. J., 227-245 (1982) · Zbl 0458.13002
[14] Matsumura, H., Commutative Ring Theory. Cambridge Stud. Adv. Math. (1986), Cambridge Univ. Press: Cambridge Univ. Press Cambridge · Zbl 0603.13001
[15] Moh, T. T., Galois theory of power series rings in characteristic p. Am. J. Math., 919-950 (1970) · Zbl 0218.13003
[16] Mustaţǎ, M.; Takagi, S.; Watanabe, K-i., F-thresholds and Bernstein-Sato polynomials, 341-364 · Zbl 1092.32014
[17] Narváez Macarro, L., On the modules of \(m\)-integrable derivations in non-zero characteristic. Adv. Math., 2712-2740 (2012) · Zbl 1242.14015
[18] Narváez Macarro, L., On Hasse-Schmidt derivations: the action of substitution maps, 219-262 · Zbl 1405.13048
[19] Narváez Macarro, L.; Tirado Hernández, M. P., On the bracket of integrable derivations. J. Algebra, 70-91 (2021) · Zbl 1457.13049
[20] Reguera, A. J., Towards the singular locus of the space of arcs. Am. J. Math., 2, 313-350 (2009) · Zbl 1188.14010
[21] Raynaud, M., Anneaux Locaux Henséliens. Lecture Notes in Math. (1970), Springer: Springer New York · Zbl 0203.05102
[22] Seidenberg, A., Derivations and integral closure. Pac. J. Math., 167-173 (1966) · Zbl 0133.29202
[23] Tirado Hernández, M. P., Leaps of the chain of \(m\)-integrable derivations in the sense of Hasse-Schmidt (2019), Universidad de Sevilla, Ph.D. Thesis
[24] Tirado Hernández, M. P., Leaps of modules of integrable derivations in the sense of Hasse-Schmidt. J. Pure Appl. Algebra (2020) · Zbl 1453.13070
[25] Tirado Hernández, M. P., On the behavior of modules of m-integrable derivations in the sense of Hasse-Schmidt under base change. Adv. Math. (2020) · Zbl 1461.13030
[26] Tirado Hernández, M. P., Integrable derivations in the sense of Hasse-Schmidt for some binomial plane curves. Rend. Semin. Mat. Univ. Padova, 53-71 (2021) · Zbl 1467.13040
[27] Traves, W., Differential Operators and Nakai’s Conjecture (1998), University of Toronto, Ph.D. Thesis
[28] Traves, W., Nakai’s conjecture for varieties smoothed by normalization. Proc. Am. Math. Soc., 8, 2245-2248 (1999) · Zbl 0933.13012
[29] Traves, W., Tight closure and differential simplicity. J. Algebra, 2, 457-476 (2000) · Zbl 1012.13011
[30] Takagi, S.; Watanabe, K-i., On F-pure thresholds. J. Algebra, 278-297 (2004) · Zbl 1082.13004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.