×

A general criterion for the Pólya-Carlson dichotomy and application. (English) Zbl 07686404

For an algebraic number \(\alpha\), we define its denominator, denoted \(\mathrm{den}(\alpha)\), to be the smallest positive integer \(d\) such that \(d\alpha\) is an algebraic integer. Let \(S\) be a subset of \(\mathbb{N}\) such that \(\big|S\cap [1,n]\big|=o(n/\log n) \) as \(n\to \infty\). Let \(K\) be a number field and let \(f(z)=\sum a_nz^n \in K[[z]]\) such that \(\sigma(f)=\sum \sigma(a_n)z^n \) converges in the open unit disk for every embedding \(\sigma: K\to \mathbb{C}\). Suppose that for every \(\beta > 1\), we have \[ \mathrm{lcm} \lbrace \mathrm{den}(a_k) : k \leq n, k \notin S\rbrace < \beta^n\] for every sufficiently large integer \(n\).
The main result of the paper shows that either \(f(z)\) admits the unit circle as a natural boundary or there exists \(\sum b_nz^n \in K[[z]]\) that is the power series of a rational function whose poles are located at the roots of unity such that \(a_n = b_n\) for every \(n \in \mathbb{N} \backslash S\).
The above result is a generalization of the well-known Polya-Carlson dichotomy when \(K = \mathbb{Q}\) and \(S = \emptyset\) [F. Carlson, Math. Z. 11, 1–23 (1921; JFM 48.0387.01)].
As an application, let \(F\) be a finite field, let \(d\) be a positive integer, let \(A\in M_d(F[t])\) be a \(d\times d\)-matrix with entries in \(F[t]\), and let \(\zeta_A(z)\) be the Artin-Mazur zeta function associated to the multiplication-by-\(A\) map on the compact abelian group \(F((1/t))^d/F[t]^d\). The authors provide a complete characterization of when \(\zeta_A(z)\) is algebraic and prove that it admits the circle of convergence as a natural boundary in the transcendence case.

MSC:

11M41 Other Dirichlet series and zeta functions
11D61 Exponential Diophantine equations
11Z05 Miscellaneous applications of number theory
37P20 Dynamical systems over non-Archimedean local ground fields
13J05 Power series rings
30B10 Power series (including lacunary series) in one complex variable

Citations:

JFM 48.0387.01

References:

[1] Artin, M., On periodic points, Ann. of Math. (2), 82-99 (1965) · Zbl 0127.13401 · doi:10.2307/1970384
[2] Byszewski, Jakub, Dynamics on abelian varieties in positive characteristic, Algebra Number Theory, 2185-2235 (2018) · Zbl 1419.37092 · doi:10.2140/ant.2018.12.2185
[3] J. Byszewski, G. Cornelissen, and M. Houben, Dynamics of endomorphisms of algebraic groups and related systems, version on September 2, 2022. 2209.00085.
[4] Bieberbach, Ludwig, Analytische Fortsetzung, Ergebnisse der Mathematik und ihrer Grenzgebiete, (N.F.), Heft 3, ii+168 pp. (1955), Springer-Verlag, Berlin-G\"{o}ttingen-Heidelberg · Zbl 0064.06902
[5] Bergelson, V., A Weyl-type equidistribution theorem in finite characteristic, Adv. Math., 928-950 (2016) · Zbl 1336.37003 · doi:10.1016/j.aim.2015.11.027
[6] Baake, Michael, A note on the dynamical zeta function of general toral endomorphisms, Monatsh. Math., 33-42 (2010) · Zbl 1205.37039 · doi:10.1007/s00605-009-0118-y
[7] Bell, Jason, Towards a P\'{o}lya-Carlson dichotomy for algebraic dynamics, Indag. Math. (N.S.), 652-668 (2014) · Zbl 1319.37012 · doi:10.1016/j.indag.2014.04.005
[8] J. P. Bell, K. D. Nguyen, and U. Zannier, D-finiteness, rationality, and height II: lower bounds over a set of positive density, 2205.02145. · Zbl 1519.13011
[9] Bell, Jason P., D-finiteness, rationality, and height, Trans. Amer. Math. Soc., 4889-4906 (2020) · Zbl 1479.11055 · doi:10.1090/tran/8046
[10] Bridy, Andrew, Transcendence of the Artin-Mazur zeta function for polynomial maps of \(\mathbb{A}^1(\overline{\mathbb{F}}_p)\), Acta Arith., 293-300 (2012) · Zbl 1285.37019 · doi:10.4064/aa156-3-6
[11] Bridy, Andrew, The Artin-Mazur zeta function of a dynamically affine rational map in positive characteristic, J. Th\'{e}or. Nombres Bordeaux, 301-324 (2016) · Zbl 1393.37109
[12] Carlson, Fritz, \"{U}ber ganzwertige Funktionen, Math. Z., 1-23 (1921) · JFM 48.0387.01 · doi:10.1007/BF01203188
[13] Dwork, Bernard, On the rationality of the zeta function of an algebraic variety, Amer. J. Math., 631-648 (1960) · Zbl 0173.48501 · doi:10.2307/2372974
[14] K. Gunn, K. D. Nguyen, and J. C. Saunders, Endomorphisms of positive characteristic tori: entropy and zeta function, 2112.14812.
[15] Guckenheimer, John, Axiom \(\text{A}+\text{no cycles}\Rightarrow \zeta_f\,(t)\) rational, Bull. Amer. Math. Soc., 592-594 (1970) · Zbl 0196.27002 · doi:10.1090/S0002-9904-1970-12449-1
[16] Hayes, David R., The distribution of irreducibles in \(\text{GF}[q,\,x]\), Trans. Amer. Math. Soc., 101-127 (1965) · Zbl 0139.27502 · doi:10.2307/1994199
[17] Hinkkanen, A., Zeta functions of rational functions are rational, Ann. Acad. Sci. Fenn. Ser. A I Math., 3-10 (1994) · Zbl 0790.30015
[18] Kulkarni, Avinash, Algebraic approximations to linear combinations of powers: an extension of results by Mahler and Corvaja-Zannier, Trans. Amer. Math. Soc., 3787-3804 (2019) · Zbl 1426.11069 · doi:10.1090/tran/7316
[19] Manning, Anthony, Axiom \(\text{A}\) diffeomorphisms have rational zeta functions, Bull. London Math. Soc., 215-220 (1971) · Zbl 0219.58007 · doi:10.1112/blms/3.2.215
[20] Neukirch, J\"{u}rgen, Algebraic number theory, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], xviii+571 pp. (1999), Springer-Verlag, Berlin · Zbl 0956.11021 · doi:10.1007/978-3-662-03983-0
[21] Schmidt, Wolfgang M., Diophantine approximation. Linear recurrence sequences, Lecture Notes in Math., 171-247 (2000), Springer, Berlin · Zbl 1034.11011 · doi:10.1007/3-540-44979-5\_4
[22] Stanley, Richard P., Enumerative combinatorics. Volume 1, Cambridge Studies in Advanced Mathematics, xiv+626 pp. (2012), Cambridge University Press, Cambridge · Zbl 1247.05003
[23] Viana, Marcelo, Foundations of ergodic theory, Cambridge Studies in Advanced Mathematics, xvi+530 pp. (2016), Cambridge University Press, Cambridge · Zbl 1369.37001 · doi:10.1017/CBO9781316422601
[24] Walters, Peter, An introduction to ergodic theory, Graduate Texts in Mathematics, ix+250 pp. (1982), Springer-Verlag, New York-Berlin · Zbl 0958.28011
[25] Weil, Andr\'{e}, Numbers of solutions of equations in finite fields, Bull. Amer. Math. Soc., 497-508 (1949) · Zbl 0032.39402 · doi:10.1090/S0002-9904-1949-09219-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.