×

Heterogeneous multiscale methods for the Landau-Lifshitz equation. (English) Zbl 1503.65175

Summary: In this paper, we present a finite difference Heterogeneous Multiscale Method for the Landau-Lifshitz equation with a highly oscillatory diffusion coefficient. The approach combines a higher order discretization and artificial damping in the so-called micro problem to obtain an efficient implementation. The influence of different parameters on the resulting approximation error is discussed. Further important factors that are taken into account are the choice of time integrator and the initial data for the micro problem which has to be set appropriately to get a consistent scheme. Numerical examples in one and two space dimensions and for both periodic as well as more general coefficients are given to demonstrate the functionality of the approach.

MSC:

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65N06 Finite difference methods for boundary value problems involving PDEs
82D40 Statistical mechanics of magnetic materials
35B27 Homogenization in context of PDEs; PDEs in media with periodic structure
35B05 Oscillation, zeros of solutions, mean value theorems, etc. in context of PDEs
78A25 Electromagnetic theory (general)
35Q60 PDEs in connection with optics and electromagnetic theory

References:

[1] Hamdache, K.: Homogenization of layered ferromagnetic media. Ecole Polytechnique, Centre de Mathématiques Appliquées, R. I. No 495. http://www.cmap.polytechnique.fr/ preprint/repository/495.ps (gzip archive) (2002)
[2] Alouges, F., De Bouard, A., Merlet, B., Nicolas, L.: Stochastic homogenization of the Landau-Lifshitz-Gilbert equation. Stochast. Part. Differ. Equ. Anal. Comput. 1-30 (2021) · Zbl 1481.35030
[3] Santugini-Repiquet, K., Homogenization of ferromagnetic multilayers in the presence of surface energies, ESAIM Control Optim. Cal. Var., 13, 2, 305-330 (2007) · Zbl 1130.35310 · doi:10.1051/cocv:2007010
[4] Choquet, C.; Moumni, M.; Tilioua, M., Homogenization of the Landau-Lifshitz-Gilbert equation in a contrasted composite medium, Discrete Contin. Dyn. Syst. S, 11, 1, 35 (2018) · Zbl 1375.35517 · doi:10.3934/dcdss.2018003
[5] Arjmand, D.; Engblom, S.; Kreiss, G., Temporal upscaling in micromagnetism via heterogeneous multiscale methods, J. Comput. Appl. Math., 345, 99-113 (2019) · Zbl 1401.65069 · doi:10.1016/j.cam.2018.05.059
[6] Arjmand, D.; Kreiss, G.; Poluektov, M., Atomistic-continuum multiscale modeling of magnetization dynamics at non-zero temperature, Adv. Comput. Math., 44, 1119-1151 (2018) · Zbl 1394.82016 · doi:10.1007/s10444-017-9575-3
[7] Leitenmaier, L.; Runborg, O., On homogenization of the Landau-Lifshitz equation with rapidly oscillating material coefficient, Commun. Math. Sci., 20, 3, 653-694 (2022) · Zbl 1503.35022 · doi:10.4310/CMS.2022.v20.n3.a3
[8] Leitenmaier, L., Runborg, O.: Upscaling errors in heterogeneous multiscale models for the Landau-Lifshitz equation (2021) · Zbl 1482.65168
[9] Weinan, E.; Engquist, B., The heterognous multiscale methods, Commun. Math. Sci., 1, 1, 87-132 (2003) · Zbl 1093.35012 · doi:10.4310/CMS.2003.v1.n1.a8
[10] Abdulle, A.; Weinan, E.; Engquist, B.; Vanden-Eijnden, E., The heterogeneous multiscale method, Acta Numer., 21, 1-87 (2012) · Zbl 1255.65224 · doi:10.1017/S0962492912000025
[11] Weinan, E.; Engquist, B.; Li, X.; Ren, W.; Vanden-Eijnden, E., Heterogeneous Multiscale Methods: a review, Commun. Comput. Phys., 2, 3, 367-450 (2007) · Zbl 1164.65496
[12] Engquist, B.; Tsai, Y-H, Heterogeneous multiscale methods for stiff ordinary differential equations, Math. Comput., 74, 252, 1707-1742 (2005) · Zbl 1081.65075 · doi:10.1090/S0025-5718-05-01745-X
[13] Arjmand, D.; Runborg, O., Analysis of heterogeneous multiscale methods for long time wave propagation problems, Multiscale Model. Simul., 12, 3, 1135-1166 (2014) · Zbl 1315.65083 · doi:10.1137/140957573
[14] Arjmand, D.; Runborg, O., A time dependent approach for removing the cell boundary error in elliptic homogenization problems, J. Comput. Phys., 314, 206-227 (2016) · Zbl 1349.65689 · doi:10.1016/j.jcp.2016.03.009
[15] García-Cervera, CJ, Numerical micromagnetics: a review, Bol. Soc. Esp. Mat. Apl., 39, 103-135 (2007) · Zbl 1242.82045
[16] Cimrák, I., A survey on the numerics and computations for the Landau-Lifshitz equation of micromagnetism, Arch. Comput. Methods Eng., 15, 3, 1-37 (2007) · doi:10.1007/BF03024947
[17] Baňas, L.: Numerical methods for the Landau-Lifshitz-Gilbert equation. In: International Conference on Numerical Analysis and Its Applications, pp. 158-165. Springer (2004) · Zbl 1118.78301
[18] Wang, X-P; Garcıa-Cervera, CJ; Weinan, E., A Gauss-Seidel projection method for micromagnetics simulations, J. Comput. Phys., 171, 1, 357-372 (2001) · Zbl 1012.82002 · doi:10.1006/jcph.2001.6793
[19] Li, P.; Xie, C.; Du, R.; Chen, J.; Wang, X-P, Two improved Gauss-Seidel projection methods for Landau-Lifshitz-Gilbert equation, J. Comput. Phys., 401 (2020) · Zbl 1453.82104 · doi:10.1016/j.jcp.2019.109046
[20] Weinan, E.; Wang, X-P, Numerical methods for the Landau-Lifshitz equation, SIAM J. Numer. Anal., 38, 1647-1665 (2001) · Zbl 0988.65079
[21] d’Aquino, M.; Serpico, C.; Miano, G., Geometrical integration of Landau-Lifshitz-Gilbert equation based on the mid-point rule, J. Comput. Phys., 209, 2, 730-753 (2005) · Zbl 1066.78006 · doi:10.1016/j.jcp.2005.04.001
[22] d’Aquino, M.; Serpico, C.; Miano, G.; Mayergoyz, I.; Bertotti, G., Numerical integration of Landau-Lifshitz-Gilbert equation based on the midpoint rule, J. Appl. Phys., 97, 10, 10-319 (2005) · doi:10.1063/1.1858784
[23] Mentink, J.; Tretyakov, M.; Fasolino, A.; Katsnelson, M.; Rasing, T., Stable and fast semi-implicit integration of the stochastic Landau-Lifshitz equation, J. Phys. Condens. Matter, 22, 17 (2010) · doi:10.1088/0953-8984/22/17/176001
[24] Serpico, C.; Mayergoyz, I.; Bertotti, G., Numerical technique for integration of the Landau-Lifshitz equation, J. Appl. Phys., 89, 11, 6991-6993 (2001) · doi:10.1063/1.1358818
[25] Lewis, D.; Nigam, N., Geometric integration on spheres and some interesting applications, J. Comput. Appl. Math., 151, 1, 141-170 (2003) · Zbl 1013.65111 · doi:10.1016/S0377-0427(02)00743-4
[26] Krishnaprasad, PS; Tan, X., Cayley transforms in micromagnetics, Physica B, 306, 1-4, 195-199 (2001) · doi:10.1016/S0921-4526(01)01003-1
[27] Leitenmaier, L.: Analysis and numerical methods for multiscale problems in magnetization dynamics. Ph.D. thesis, KTH (2021)
[28] Wei, D., Micromagnetics and Recording Materials (2012), Berlin, Heidelberg: Springer, Berlin, Heidelberg · doi:10.1007/978-3-642-28577-6
[29] Mayergoyz, ID; Bertotti, G.; Serpico, C., Nonlinear Magnetization Dynamics in Nanosystems (2009), Oxford: Elsevier, Oxford · Zbl 1181.37002
[30] García-Cervera, CJ, Improved Gauss-Seidel projection method for micromagnetics simulations, IEEE Trans. Magn., 39, 3, 1766-1770 (2003) · doi:10.1109/TMAG.2003.810610
[31] Peiró, J., Sherwin, S.: finite difference, finite element and finite volume methods for partial differential equations. In: Handbook of Materials Modeling: Methods, pp. 2415-2446. Springer, Dordrecht (2005)
[32] Leitenmaier, L., Nazarov, M.: A finite element based Heterogeneous Multiscale Method for the Landau-Lifshitz equation. arXiv:2111.11197 (2021)
[33] Engquist, B.; Holst, H.; Runborg, O., Multi-scale methods for wave propagation in heterogeneous media, Commun. Math. Sci., 9, 33-56 (2011) · Zbl 1281.65110 · doi:10.4310/CMS.2011.v9.n1.a2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.