×

On basis and pure Nash equilibrium of finite pure harmonic games. (English) Zbl 1497.91019

Summary: This paper investigates the basis and pure Nash equilibrium of finite pure harmonic games (FPHGs) based on the vector space structure. First, a new criterion is proposed for the construction of pure harmonic subspace, based on which, a more concise basis is constructed for the pure harmonic subspace. Second, based on the new basis of FPHGs and auxiliary harmonic vector, a more easily verifiable criterion is presented for the existence of pure Nash equilibrium in basis FPHGs. Third, by constructing a pure Nash equilibrium cubic matrix, the verification of pure Nash equilibrium in three-player FPHGs is given.

MSC:

91A11 Equilibrium refinements
91A06 \(n\)-person games, \(n>2\)
Full Text: DOI

References:

[1] Friedman, J. W., Game Theory with Application to Economics (1986), New York: Oxford University Press, New York, New York
[2] Nash, J., Non-cooperative games, Annals of Mathematics: Second Series, 54, 2, 286-295 (1951) · Zbl 0045.08202 · doi:10.2307/1969529
[3] Farrell, J., Communication, coordination and Nash equilibrium, Economics Letters, 27, 3, 209-214 (1988) · Zbl 1328.91034 · doi:10.1016/0165-1765(88)90172-3
[4] Rosenthal, R. W., A class of games possessing pure-strategy Nash equilibria, International Journal of Game Theory, 2, 1, 65-67 (1973) · Zbl 0259.90059 · doi:10.1007/BF01737559
[5] Monderer, D.; Shapley, L. S., Potential games, Games and Economic Behavior, 14, 1, 124-143 (1996) · Zbl 0862.90137 · doi:10.1006/game.1996.0044
[6] Cheng, D. Z., On finite potential games, Automatica, 50, 1793-1801 (2014) · Zbl 1296.93069 · doi:10.1016/j.automatica.2014.05.005
[7] Liu, X. Y.; Zhu, J. D., On potential equations of finite games, Automatica, 68, 245-253 (2016) · Zbl 1414.91014 · doi:10.1016/j.automatica.2016.01.074
[8] Candogan, O.; Menache, I.; Ozdaglar, A., Flows and decompositions of games: Harmonic and potential games, Mathematics of Operations Research, 36, 3, 474-503 (2011) · Zbl 1239.91006 · doi:10.1287/moor.1110.0500
[9] Hao, Y. Q.; Cheng, D. Z., On skew-symmetric games, Journal of the Franklin Institute, 355, 6, 3196-3220 (2018) · Zbl 1395.91011 · doi:10.1016/j.jfranklin.2018.02.015
[10] Li, C. X.; He, F. H.; Liu, T., Symmetry-based decomposition of finite games, Science China Information Sciences, 62, 1, 012207 (2019) · doi:10.1007/s11432-017-9411-0
[11] Liu T, Qi H S, and Cheng D Z, Dual expressions of decomposed subspaces of finite games, Proceedings of the 34th Chinese Control Conference, Hangzhou, 2015, 9146-9151.
[12] Li C X, Liu T, He F H, et al., On finite harmonic games, The 55th IEEE Conference on Decision and Control, Las Vegas, NV, 2016, 7024-7029.
[13] Wang, Y. H.; Liu, T.; Cheng, D. Z., From weighted potential game to weighted harmonic game, IET Control Theory & Applications, 11, 13, 2161-2169 (2017) · doi:10.1049/iet-cta.2016.1454
[14] Cheng, D. Z.; Liu, T., Linear representation of symmetric games, IET Control Theory & Applications, 11, 18, 3278-3287 (2017) · doi:10.1049/iet-cta.2017.0620
[15] Li, Y. L.; Li, H. T.; Xu, X. J., Semi-tensor product approach to minimal-agent consensus control of networked evolutionary games, IET Control Theory & Applications, 12, 16, 2269-2275 (2018) · doi:10.1049/iet-cta.2018.5230
[16] Qi, H. S.; Wang, Y. H.; Liu, T., Vector space structure of finite evolutionary games and its application to strategy profile convergence, Journal of Systems Science & Complexity, 29, 3, 602-628 (2016) · Zbl 1414.91054 · doi:10.1007/s11424-016-4192-7
[17] Li, C. X.; He, F. H.; Liu, T., Verification and dynamics of group-based potential games, IEEE Transactions on Control of Network Systems, 6, 1, 215-224 (2019) · Zbl 1515.91024 · doi:10.1109/TCNS.2018.2808138
[18] Mao, Y.; Wang, L. Q.; Liu, Y., Stabilization of evolutionary networked games with length-r information, Applied Mathematics and Computation, 337, 442-451 (2018) · Zbl 1427.91063 · doi:10.1016/j.amc.2018.05.027
[19] Jiang, K. C.; Wang, J. H., Stabilization of a class of congestion games via intermittent control, Science China Information Sciences, 65, 149203 (2022) · doi:10.1007/s11432-019-3042-4
[20] Zhang, X.; Cheng, D. Z., Profile-dynamic based fictitious play, Science China Information Sciences, 64, 169202 (2021) · doi:10.1007/s11432-019-9926-2
[21] Guo, P. L.; Wang, Y. Z., The computation of Nash equilibrium in fashion games via semi-tensor product method, Journal of Systems Science & Complexity, 29, 4, 881-896 (2016) · Zbl 1347.91074 · doi:10.1007/s11424-016-5057-9
[22] Li, H. T.; Zhao, G. D.; Guo, P. L., Analysis and Control of Finite-Value Systems (2018), Florida: CRC Press, Florida · Zbl 1395.93002
[23] Zou, Y. L.; Zhu, J. D., Graph theory methods for decomposition w.r.t. outputs of Boolean control networks, Journal of Systems Science & Complexity, 30, 3, 519-534 (2015) · Zbl 1368.93285 · doi:10.1007/s11424-016-5131-3
[24] Li, C. X.; Xing, Y.; He, F. H., A strategic learning algorithm for state-based games, Automatica, 113, 108615 (2020) · Zbl 1440.93017 · doi:10.1016/j.automatica.2019.108615
[25] Liang, J. L.; Chen, H. W.; Liu, Y., On algorithms for state feedback stabilization of Boolean control networks, Automatica, 84, 10-16 (2017) · Zbl 1376.93083 · doi:10.1016/j.automatica.2017.06.040
[26] Wang, H. Y.; Zhong, J. H.; Lin, D. D., Linearization of multi-valued nonlinear feedback shift registers, Journal of Systems Science & Complexity, 30, 2, 494-509 (2016) · Zbl 1369.94513 · doi:10.1007/s11424-016-5156-7
[27] Guo, Y. Q.; Zhou, R. P.; Wu, Y. H., Stability and set stability in distribution of probabilistic Boolean networks, IEEE Transactions on Automatic Control, 64, 2, 736-742 (2019) · Zbl 1482.60037
[28] Meng, M.; Lam, J.; Feng, J., l_1-gain analysis and model reduction problem for Boolean control networks, Information Sciences, 348, 68-83 (2016) · Zbl 1398.93151 · doi:10.1016/j.ins.2016.02.010
[29] Jiang, D. P.; Zhang, K. Z., Observability of Boolean control networks with time-variant delays in states, Journal of Systems Science & Complexity, 31, 2, 436-445 (2018) · Zbl 1401.93045 · doi:10.1007/s11424-017-6145-1
[30] Wang S L and Li H T, Aggregation method to reachability and optimal control of large-size Boolean control networks, Science China Information Sciences, 2022, DOI: doi:10.1007/s11432-021-3388-y.
[31] Lu, J. Q.; Li, H. T.; Liu, Y., Survey on semi-tensor product method with its applications in logical networks and other finite-valued systems, IET Control Theory & Applications, 11, 13, 2040-2047 (2017) · doi:10.1049/iet-cta.2016.1659
[32] Li, H. T.; Zhao, G. D.; Meng, M., A survey on applications of semi-tensor product method in engineering, Science China Information Sciences, 61, 010202 (2018) · doi:10.1007/s11432-017-9238-1
[33] Fornasini, E.; Valcher, M. E., Recent developments in Boolean networks control, Journal of Control & Decision, 3, 1, 1-18 (2016) · doi:10.1080/23307706.2015.1098577
[34] Cheng, D. Z.; Liu, T.; Zhang, K. Z., On decomposed subspaces of finite games, IEEE Transactions on Automatic Control, 61, 11, 3651-3656 (2016) · Zbl 1359.91011 · doi:10.1109/TAC.2016.2525936
[35] Bates, D. M.; Watts, D. G., Relative curvature measures of nonlinearity, Journal of the Royal Statistical Society, 42, 1, 1-25 (1980) · Zbl 0455.62028
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.