×

Reduction of divisors and the Clebsch system. (English) Zbl 1490.37081

Summary: There are a few Lax matrices of the Clebsch system. Poles of the Baker-Akhiezer function determine the class of equivalent divisors on the corresponding spectral curves. According to the Riemann-Roch theorem, each class has a unique reduced representative. We discuss properties of such a reduced divisor on the spectral curve of \(3\times 3\) Lax matrix having a natural generalization to \(gl^*(n)\) case.

MSC:

37J35 Completely integrable finite-dimensional Hamiltonian systems, integration methods, integrability tests
70E15 Free motion of a rigid body
14H70 Relationships between algebraic curves and integrable systems
14D06 Fibrations, degenerations in algebraic geometry
58K10 Monodromy on manifolds
58K50 Normal forms on manifolds
70E05 Motion of the gyroscope

References:

[1] Abel, N. H., Mémoire sure une propriété générale d’une class très éntendue des fonctions transcendantes, Oeuvres complétes, 145-211 (1881), Christiania: Grondahl, Christiania
[2] Adler, M.; van Moerbeke, P., The Kowalewski and Hénon - Heiles Motions As Manakov Geodesic Flows on \({\rm SO}(4)\): A Two-Dimensional Family of Lax Pairs, Comm. Math. Phys., 113, 4, 659-700 (1988) · Zbl 0647.58022 · doi:10.1007/BF01223242
[3] Arkhangel’skii, Yu. A., Analytical Dynamics of a Rigid Body (1977), Moscow: Nauka, Moscow
[4] Belokolos, E. P., Bobenko, A. I., Enol’skii, V. Z., Its, A. R., and Matveev, V. B., Algebro-Geometric Approach to Nonlinear Integrable Equations, Berlin: Springer, 1994. · Zbl 0809.35001
[5] Biscani, F.; Izzo, D., A Complete and Explicit Solution to the Three-Dimensional Problem of Two Fixed Centres, Mon. Not. R. Astron. Soc., 455, 4, 3480-3493 (2016) · Zbl 1498.70013 · doi:10.1093/mnras/stv2512
[6] Bobenko, A. I., Euler Equations on the Algebras \(e(3)\) and \({\rm so}(4)\): Isomorphism of the Integrable Cases, Funktsional. Anal. i Prilozhen., 20, 1, 64-66 (1986) · Zbl 0622.58010 · doi:10.1007/BF01077316
[7] Bobenko, A. I., Theta Function Formulae for Classical Tops, Preprint LOMI P-10-87 (1987).
[8] Bolsinov, A. V.; Fomenko, A. T., Integrable Hamiltonian Systems: Geometry, Topology, Classification (2004), Boca Raton, Fla.: CRC, Boca Raton, Fla. · Zbl 1056.37075 · doi:10.1201/9780203643426
[9] Borisov, A. V.; Mamaev, I. S., Rigid Body Dynamics: Hamiltonian Methods, Integrability, Chaos (2005), Izhevsk: R&C Dynamics, Institute of Computer Science, Izhevsk · Zbl 1114.70001
[10] de Brun, F., Rotation kring fix punkt, Öfvers. Kongl. Vetensk.-Akad. Förh. Stokholm, 7, 455-468 (1893) · JFM 25.1431.01
[11] Cherednik, I. V., Integrability of the Equation of a Two-Dimensional Asymmetric Chiral O(3) Field and of Its Quantum Analog, Sov. J. Nucl. Phys., 33, 1, 278-282 (1981)
[12] Chaplygin, S. A., Characteristic Function in Rigid Body Dynamics, Collected Works:, 260-282 (1950), Moscow: Gostekhizdat, Moscow
[13] Clebsch, A., Über die Bewegung eines Körpers in einer Flüssigkeit, Math. Ann., 3, 238-262 (1870) · JFM 02.0733.01 · doi:10.1007/BF01443985
[14] Demin, V. G.; Kiselev, F. I., A New Class of Periodic Motions of a Solid Body with One Fixed Point in a Newtonian Force Field, Sov. Phys. Dokl., 214, 5, 270-272 (1974) · Zbl 0296.70005
[15] Dubrovin, B. A., Theta-Functions and Nonlinear Equations, Russian Math. Surveys, 36, 2, 11-92 (1981) · Zbl 0478.58038 · doi:10.1070/RM1981v036n02ABEH002596
[16] Euler, L., Institutionum calculi integralis (1768), Petropoli: Acad. Imp. Sci., Petropoli
[17] Fedorov, Yu., Magri, F., and Skrypnyk, T., A New Approach to Separation of Variables for the Clebsch Integrable System: Part 1. Reduction to Quadratures, arXiv:2102.03445 (2021).
[18] Fedorov, Yu., Magri, F., and Skrypnyk, T., A New Approach to Separation of Variables for the Clebsch Integrable System: Part 2. Inversion of the Abel - Prym Map, arXiv:2102.03599 (2021).
[19] Halphen, G.-H., Sur le mouvement d’un solide dans un liquide, Comptes rendus hebdomadaires des séances de l’Académie des Sciences, 104, 807-811 (1887) · JFM 19.1001.01
[20] Kharlamova, E. I., On the Motion of a Rigid Body about a Fixed Point in the Central Newtonian Force Field, Izv. Sibirsk. Otdel. Akad. Nauk SSSR, 6, 7-17 (1959)
[21] Kobb, G., Sur le problème de la rotation d’un corps autour d’un point fixe, Bull. Soc. Math. France, 23, 210-215 (1895) · JFM 26.0842.03 · doi:10.24033/bsmf.523
[22] Komarov, I. V.; Tsiganov, A. V., On a Trajectory Isomorphism of the Kowalevski Gyrostat and the Clebsch Problem, J. Phys. A, 38, 13, 2917-2927 (2005) · Zbl 1088.70006 · doi:10.1088/0305-4470/38/13/007
[23] Kötter, F., Über die Bewegung eines festen Körpers in einer Flüssigkeit: 1, 2, J. Reine Angew. Math., 1892, 109, 51-81 (1892) · JFM 24.0908.01 · doi:10.1515/crll.1892.109.51
[24] Kowalevski, S., Sur le probléme de la rotation d’un corps solide autour d’un point fixe, Acta Math., 12, 177-232 (1889) · JFM 21.0935.01 · doi:10.1007/BF02592182
[25] Magnus, K., Kreisel: Theorie und Anwendungen (1971), Berlin: Springer, Berlin · Zbl 0228.70005 · doi:10.1007/978-3-642-52162-1
[26] Magri, F. and Skrypnyk, T., The Clebsch System, arXiv:1512.04872 (2015).
[27] Marikhin, V. G.; Sokolov, V. V., On Quasi-Stäckel Hamiltonians, Russian Math. Surveys, 60, 5, 981-983 (2005) · Zbl 1140.37017 · doi:10.1070/RM2005v060n05ABEH003744
[28] Marikhin, V. G.; Sokolov, V. V., On the Reduction of the Pair of Hamiltonians Quadratic in Momenta to Canonic Form and Real Partial Separation of Variables for the Clebsch Top, Russian J. Nonlinear Dyn., 4, 3, 313-322 (2008)
[29] Minkowski, H., Über die Bewegung eines festen Körpers in einer Flüssigkeit, Sitzungsber. Königl. Preuß. Akad. Wiss. Berlin, 1888, pp. 1095-1110. · JFM 20.0993.01
[30] a, R., Algebraic Curves and Riemann Surfaces (1995), Providence, R.I.: AMS, Providence, R.I. · Zbl 0820.14022
[31] Mumford, D., Tata Lectures on Theta: 2. Jacobian Theta Functions and Differential Equations (1984), Boston, Mass.: Birkhäuser, Boston, Mass. · Zbl 0549.14014
[32] Neumann, C., De problemate quodam mechanico, quod ad primam integralium ultraellipticorum classem revocatur, J. Reine Angew. Math., 56, 46-63 (1859) · ERAM 056.1472cj
[33] Perelomov, A. M., Some Remarks on the Integrability of the Equations of Motion of a Rigid Body in an Ideal Fluid, Funct. Anal. Appl., 15, 2, 144-146 (1981) · Zbl 0495.70016 · doi:10.1007/BF01082293
[34] Petrera, M. Pfadler; Suris, Yu. B., On Integrability of Hirota - Kimura Type Discretizations, Regul. Chaotic Dyn., 16, 3-4, 245-289 (2011) · Zbl 1258.37067 · doi:10.1134/S1560354711030051
[35] Pop, C.; Ene, R.-D., Stability Problems and Analytical Integration for the Clebsch’s System, Open Math., 17, 1, 242-259 (2019) · Zbl 1431.37064 · doi:10.1515/math-2019-0018
[36] Schottky, F., Über das analytische Problem der Rotation eines starren Körpers in Raume von vier Dimensionen, Sitzungsber. Königl. Preuß. Akad. Wiss. Berlin, 1891, pp. 227-232. · JFM 23.0956.03
[37] Sklyanin, E. K.; Takebe, T., Separation of Variables in the Elliptic Gaudin Model, Comm. Math. Phys., 204, 1, 17-38 (1999) · Zbl 1131.82304 · doi:10.1007/s002200050635
[38] Steklov, V. A., On the Motion of a Rigid Body in a Fluid (1893), Kharkov: Darre, Kharkov
[39] Stekloff, V. A., Remarque sur un problème de Clebsch sur le mouvement d’un corps solide dans un liqiude indefini en sur le problème de M. de Brun, C. R. Acad. Sci. Paris, 135, 526-528 (1902) · JFM 33.0783.01
[40] Tisserand, F., Sur le mouvement des planètes autour du Soleil, d’après la loi électrodynamique de Weber, C. R. Acad. Sci. Paris, 75, 760-763 (1872) · JFM 04.0465.01
[41] Tsiganov, A. V., A Note on Elliptic Coordinates on the Lie Algebra e(3), J. Phys. A, 39, 38 (2006) · Zbl 1100.22014 · doi:10.1088/0305-4470/39/38/L01
[42] Tsyganov, A. V., On an Isomorphism of Integrable Cases of the Euler Equations on the Bi-Hamiltonian Manifolds e(3) and so(4), J. Math. Sci. (N. Y.), 136, 1, 641-3647 (2004)
[43] Tsyganov, A. V., Compatible Lie - Poisson Brackets on the Lie Algebras e(3) and so(4), Theoret. and Math. Phys., 151, 1, 459-473 (2007) · Zbl 1127.37045 · doi:10.1007/s11232-007-0034-z
[44] Tsiganov, A. V., On Auto and Hetero Bäcklund Transformations for the Hénon - Heiles Systems, Phys. Lett. A, 379, 45-46, 2903-2907 (2015) · Zbl 1349.37072 · doi:10.1016/j.physleta.2015.08.023
[45] Tsiganov, A. V., Superintegrable Systems and Riemann - Roch Theorem, J. Math. Phys., 61, 1 (2020) · Zbl 1437.37070 · doi:10.1063/1.5132869
[46] Tsiganov, A. V., Reduction of Divisors for Classical Superintegrable \(GL(3)\) Magnetic Chain, J. Math. Phys., 61, 11 (2020) · Zbl 1455.14070 · doi:10.1063/5.0010423
[47] Tsiganov, A. V., Discretization and Superintegrability All Rolled into One, Nonlinearity, 33, 9, 4924-4939 (2020) · Zbl 1445.14054 · doi:10.1088/1361-6544/ab9243
[48] Tsiganov, A. V., Reduction of Divisors and Kowalevski Top, arXiv:2009.09624 (2020).
[49] Tsiganov, A. V., Reducible Abelian Varieties and Lax Matrices for Euler’s Problem of Two Fixed Centres, arXiv:2104.10362 (2021).
[50] Veselov, A. P., The Landau - Lifshits Equation and Integrable Systems of Classical Mechanics, Dokl. Akad. Nauk SSSR, 270, 5, 1094-1097 (1983)
[51] Weber, H., Über die kummersche Fläche vieter Ordnung mit sechzehn Knoterpunkten und ihre Beziehung zu den Thetafunctionen mit zwei Veranderlichen, J. Reine Angew. Math., 84, 332-354 (1878)
[52] Zhivkov, A.; Christov, O., Effective Solutions of the Clebsch and C. Neumann Systems, Proc. of the Berlin Mathematical Society (1997-2000), 217-242 (2001), Berlin: Berliner Mathematische Gesellschaft, Berlin · Zbl 1171.37327
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.