×

Scalable vertiport hub location selection for air taxi operations in a metropolitan region. (English) Zbl 1492.90034

Summary: On-demand air mobility services, often called air taxis, are on the way to revolutionize our urban/regional transportation sector by lifting transportation to the third dimension and thus possibly contribute to solving the congestion-induced transportation deadlock many metropolitan regions face today. Although existing research mainly focuses on the design of efficient vehicles and specifically battery technology, in the near future, a new question will arise: Where to locate the vertiports/landing pads for such air taxis? In this study, we propose a vertiport location selection problem. In contrast to existing studies, we allow the demand to be distributed over the whole metropolitan area, modeled as a grid, and exclude certain grid cells from becoming hubs, for example, because of safety/geographical constraints. The combination of these two contributions makes the problem intriguingly difficult to solve with standard solution techniques. We propose a novel variable neighborhood search heuristic, which is able to solve \(12 \times 12\) grid instances within a few seconds of computation time and zero gaps in our experiments, whereas CPLEX needs up to 10 hours. We believe that our study contributes toward the scalable selection of vertiport locations for air taxis.
Summary of contribution: The increasing interest in opening the third dimension, that is, altitude, to transportation inside metropolitan regions raises new research challenges. Existing research mainly focuses on the design of efficient vehicles and control problems. In the near future, however, the actual operation of air taxis will lead to new set of operations research problems for so-called air taxi operations. Our contribution focuses on the optimization of vertiports for air taxi operations in a metropolitan region. We choose to model the problem over a grid-like demand structure, with a novel side constraint: selected grid cells are unavailable as hubs, for example, because of environmental, technical, cultural, or other reasons. This makes our model a special case in between the two traditional models: discrete location and continuous location. Our model is inherently difficult to solve for exact methods; for instance, solving a grid of \(12 \times 12\) grid cells needs more than 10 hours with CPLEX, when modeled as a discrete location problem. We show that a straightforward application of existing neighborhood search heuristics is not suitable to solve this problem well. Therefore, we design an own variant of mixed variable neighborhood search, which consists of novel local search steps, tailored toward our grid structure. Our evaluation shows that by using our novel heuristic, almost all instances can be solved toward optimality.

MSC:

90B20 Traffic problems in operations research
90B80 Discrete location and assignment
90C59 Approximation methods and heuristics in mathematical programming

Software:

CPLEX; HUBBI
Full Text: DOI

References:

[1] Abdinnour-Helm S (1998) A hybrid heuristic for the uncapacitated hub location problem. Eur. J. Oper. Res. 106(2-3):489-499.Crossref, Google Scholar · Zbl 0991.90081 · doi:10.1016/S0377-2217(97)00286-5
[2] Alumur S, Kara BY (2008) Network hub location problems: The state of the art. Eur. J. Oper. Res. 190(1):1-21.Crossref, Google Scholar · Zbl 1146.90455 · doi:10.1016/j.ejor.2007.06.008
[3] Alumur SA, Kara BY, Karasan OE (2009) The design of single allocation incomplete hub networks. Transportation Res. Part B Methodological 43(10):936-951.Crossref, Google Scholar · doi:10.1016/j.trb.2009.04.004
[4] Antcliff KR, Goodrich K, Moore M (2016) NASA Silicon Valley urban vtol air-taxi study. On-demand mobility/emerging tech workshop, vol. 7, Arlington.Google Scholar
[5] Calik H, Alumur SA, Kara BY, Karasan OE (2009) A tabu-search based heuristic for the hub covering problem over incomplete hub networks. Comput. Oper. Res. 36(12):3088-3096.Crossref, Google Scholar · Zbl 1177.90201 · doi:10.1016/j.cor.2008.11.023
[6] Campbell JF (1993) Continuous and discrete demand hub location problems. Transportation Res. Part B Methodological 27(6):473-482.Crossref, Google Scholar · doi:10.1016/0191-2615(93)90018-6
[7] Campbell JF (1994) Integer programming formulations of discrete hub location problems. Eur. J. Oper. Res. 72(2):387-405.Crossref, Google Scholar · Zbl 0790.90048 · doi:10.1016/0377-2217(94)90318-2
[8] Chen JF (2007) A hybrid heuristic for the uncapacitated single allocation hub location problem. Omega 35(2):211-220.Crossref, Google Scholar · doi:10.1016/j.omega.2005.05.004
[9] Contreras I, Díaz JA, Fernández E (2011) Branch and price for large-scale capacitated hub location problems with single assignment. INFORMS J. Comput. 23(1):41-55.Link, Google Scholar · Zbl 1243.90087
[10] Contreras I, Fernández E, Marín A (2010) The tree of hubs location problem. Eur. J. Oper. Res. 202(2):390-400.Crossref, Google Scholar · Zbl 1175.90396 · doi:10.1016/j.ejor.2009.05.044
[11] Corberán Á, Peiró J, Campos V, Glover F, Martí R (2016) Strategic oscillation for the capacitated hub location problem with modular links. J. Heuristics 22(2):221-244.Crossref, Google Scholar · doi:10.1007/s10732-016-9308-7
[12] Correia I, Nickel S, Saldanha-da Gama F (2018) A stochastic multi-period capacitated multiple allocation hub location problem: Formulation and inequalities. Omega 74:122-134.Crossref, Google Scholar · doi:10.1016/j.omega.2017.01.011
[13] Cunha CB, Silva MR (2007) A genetic algorithm for the problem of configuring a hub-and-spoke network for a ltl trucking company in brazil. Eur. J. Oper. Res. 179(3):747-758.Crossref, Google Scholar · Zbl 1163.90627 · doi:10.1016/j.ejor.2005.03.057
[14] Dai W, Zhang J, Sun X, Wandelt S (2019) Hubbi: Iterative network design for incomplete hub location problems. Comput. Oper. Res. 104:394-414.Crossref, Google Scholar · Zbl 1458.90425 · doi:10.1016/j.cor.2018.09.011
[15] Damgacioglu H, Dinler D, Ozdemirel NE, Iyigun C (2015) A genetic algorithm for the uncapacitated single allocation planar hub location problem. Comput. Oper. Res. 62:224-236.Crossref, Google Scholar · Zbl 1348.90385 · doi:10.1016/j.cor.2014.09.003
[16] de Camargo R, Miranda G, Luna H (2008) Benders decomposition for the uncapacitated multiple allocation hub location problem. Comput. Oper. Res. 35(4):1047-1064.Crossref, Google Scholar · Zbl 1180.90038 · doi:10.1016/j.cor.2006.07.002
[17] de Sá EM, Contreras I, Cordeau JF (2015) Exact and heuristic algorithms for the design of hub networks with multiple lines. Eur. J. Oper. Res. 246(1):186-198.Crossref, Google Scholar · Zbl 1346.90509 · doi:10.1016/j.ejor.2015.04.017
[18] Elhedhli S, Wu H (2010) A lagrangean heuristic for hub-and-spoke system design with capacity selection and congestion. INFORMS J. Comput. 22(2):282-296.Link, Google Scholar · Zbl 1243.90043
[19] Emir-Farinas H, Francis RL (2005) Demand point aggregation for planar covering location models. Ann. Oper. Res. 136:175-192.Crossref, Google Scholar · Zbl 1114.90057 · doi:10.1007/s10479-005-2044-2
[20] Ernst AT, Krishnamoorthy M (1999) Solution algorithms for the capacitated single allocation hub location problem. Ann. Oper. Res. 86(0):141-159.Crossref, Google Scholar · Zbl 0918.90096 · doi:10.1023/A:1018994432663
[21] Ernst AT, Krishnamoorthy M (1996) Efficient algorithms for the uncapacitated single allocation p-hub median problem. Location Sci. 4(3):139-154.Crossref, Google Scholar · Zbl 0927.90065 · doi:10.1016/S0966-8349(96)00011-3
[22] Eyster JW, White JA, Wierwille WW (1973) On solving multifacility location problems using a hyperboloid approximation procedure. AIIE Trans. 5(1):01-06.Crossref, Google Scholar · doi:10.1080/05695557308974875
[23] Farahani RZ, Hekmatfar M, Arabani AB, Nikbakhsh E (2013) Hub location problems: A review of models, classification, solution techniques, and applications. Comput. Industrial Engrg. 64(4):1096-1109.Crossref, Google Scholar · doi:10.1016/j.cie.2013.01.012
[24] Francis R, Lowe T, Tamir A, Emir-Farinas H (2004) A framework for demand point and solution space aggregation analysis for location models. Eur. J. Oper. Res. 159(3):574-585.Crossref, Google Scholar · Zbl 1065.90053 · doi:10.1016/S0377-2217(03)00433-8
[25] Francis RL, Lowe TJ, Rayco MB, Tamir A (2009) Aggregation error for location models: Survey and analysis. Ann. Oper. Res. 167(1):171-208.Crossref, Google Scholar · Zbl 1173.90005 · doi:10.1007/s10479-008-0344-z
[26] Hansen P, Mladenović N (1997) Variable neighborhood search for the p-median. Location Sci. 5(4):207-226.Crossref, Google Scholar · Zbl 0928.90043 · doi:10.1016/S0966-8349(98)00030-8
[27] He Y, Wu T, Zhang C, Liang Z (2015) An improved mip heuristic for the intermodal hub location problem. Omega 57:203-211.Crossref, Google Scholar · doi:10.1016/j.omega.2015.04.016
[28] Hoff A, Peiró J, Corberán Á, Martí R (2017) Heuristics for the capacitated modular hub location problem. Comput. Oper. Res. 86:94-109.Crossref, Google Scholar · Zbl 1391.90382 · doi:10.1016/j.cor.2017.05.004
[29] Holden J, Goel N (2016) Uber Elevate: Fast-Forwarding to a Future of On-Demand Urban Air Transportation (Uber Technologies).Google Scholar
[30] Holmes BJ, Parker R, Stanley D, McHugh P, Garrow L, Masson P, Olcott J (2017) NASA strategic framework for on-demand air mobility. Report for NASA Headquarters Aeronautics Research Mission Directorate.Google Scholar
[31] Holmes BJ (2016) A vision and opportunity for transformation of on-demand air mobility. Proc. 16th AIAA Aviation Technology, Integration, and Operations Conf.Google Scholar
[32] Holmes BJ, Durham MH, Tarry SE (2004) Small aircraft transportation system concept and technologies. J. Aircraft 41(1):26-35.Crossref, Google Scholar · doi:10.2514/1.3257
[33] Ilić A, Urošević D, Brimberg J, Mladenović N (2010) A general variable neighborhood search for solving the uncapacitated single allocation p-hub median problem. Eur. J. Oper. Res. 206(2):289-300.Crossref, Google Scholar · Zbl 1188.90142 · doi:10.1016/j.ejor.2010.02.022
[34] Kim HD, Perry AT, Ansell PJ (2018) A review of distributed electric propulsion concepts for air vehicle technology. Proc. AIAA/IEEE Electric Aircraft Technologies Sympos. (IEEE, New York), 1-21.Crossref, Google Scholar · doi:10.2514/6.2018-4998
[35] Köksalan M, Soylu B (2010) Bicriteria p-hub location problems and evolutionary algorithms. INFORMS J. Comput. 22(4):528-542.Link, Google Scholar · Zbl 1243.90092
[36] Kratica J, Milanović M, Stanimirović Z, Tošić D (2011) An evolutionary-based approach for solving a capacitated hub location problem. Applied Soft Comput. 11(2):1858-1866.Crossref, Google Scholar · doi:10.1016/j.asoc.2010.05.035
[37] Lim E, Hwang H (2019) The selection of vertiport location for on-demand mobility and its application to seoul metro area. Internat. J. Aeronautical Space Sci. 20(1):260-272.Crossref, Google Scholar · doi:10.1007/s42405-018-0117-0
[38] Lüer-Villagra A, Marianov V (2013) A competitive hub location and pricing problem. Eur. J. Oper. Res. 231(3):734-744.Crossref, Google Scholar · Zbl 1317.90167 · doi:10.1016/j.ejor.2013.06.006
[39] Martí R, Corberán A, Peiró J (2015) Scatter search for an uncapacitated p-hub median problem. Comput. Oper. Res. 58:53-66.Google Scholar · Zbl 1348.90407
[40] Mladenović N, Urošević D, Hanafi S, Ilić A, et al. (2012) A general variable neighborhood search for the one-commodity pickup-and-delivery travelling salesman problem. Eur. J. Oper. Res. 220(1):270-285.Crossref, Google Scholar · Zbl 1253.90200 · doi:10.1016/j.ejor.2012.01.036
[41] Mohammadi M, Jula P, Tavakkoli-Moghaddam R (2019) Reliable single-allocation hub location problem with disruptions. Transportation Res. Part E Logistical Transportation Rev. 123:90-120.Crossref, Google Scholar · doi:10.1016/j.tre.2019.01.008
[42] O’Kelly ME (1986) The location of interacting hub facilities. Transportation Sci. 20:92-106.Link, Google Scholar
[43] O’Kelly ME (1987) A quadratic integer program for the location of interacting hub facilities. Eur. J. Oper. Res. 32(3):393-404.Crossref, Google Scholar · Zbl 0627.90030 · doi:10.1016/S0377-2217(87)80007-3
[44] O’Kelly ME, Campbell JF, de Camargo RS, de Miranda G Jr (2015) Multiple allocation hub location model with fixed arc costs. Geographic Anal. 47(1):73-96.Crossref, Google Scholar · doi:10.1111/gean.12051
[45] Peiró J, Corberán A, Martí R (2014) Grasp for the uncapacitated r-allocation p-hub median problem. Comput. Oper. Res. 43:50-60.Crossref, Google Scholar · Zbl 1348.90410 · doi:10.1016/j.cor.2013.08.026
[46] Polaczyk N, Trombino E, Wei P, Mitici M (2019) A review of current technology and research in urban on-demand air mobility applications. Proc. Vertical Flight Society Autonomous VTOL Technical Meetings and Electronic VTOL Sympos.Google Scholar
[47] Rath S, Chow JY (2019) Air taxi skyport location problem for airport access. Preprint, submitted April 1, https://arxiv.org/abs/1904.01497.Google Scholar
[48] Robinson JN, Sokollek MDR, Justin CY, Mavris DN (2018) Development of a methodology for parametric analysis of stol airpark geo-density. Proc. Aviation Technology, Integration, and Operations Conf.Google Scholar
[49] Rodríguez-Martín I, Salazar-González JJ, Yaman H (2014) A branch-and-cut algorithm for the hub location and routing problem. Comput. Oper. Res. 50:161-174.Google Scholar · Zbl 1348.90414
[50] Schippl J, Decker M, Fleischer T (2013) Personal air vehicles as a new option for commuting in europe: Vision or illusion? Proc. 41st European Transport Conf.Google Scholar
[51] Serper EZ, Alumur SA (2016) The design of capacitated intermodal hub networks with different vehicle types. Transportation Res. Part B Methodological 86:51-65.Crossref, Google Scholar · doi:10.1016/j.trb.2016.01.011
[52] Stumpf E, Kreimeier M, Strathoff P, Lueckhof JM, Schroeder KU (2018) Small aircraft concept for regional on-demand air mobility. Proc. 31st ICAS Congress.Google Scholar
[53] Sun X, Wandelt S, Stumpf E (2018) Competitiveness of on-demand air taxis regarding door-to-door travel time: A race through europe. Transporation Res. Part E Logistical Transportation Rev. 119:1-18.Crossref, Google Scholar · doi:10.1016/j.tre.2018.09.006
[54] Sun X, Dai W, Zhang Y, Wandelt S (2017) Finding-hub median locations: An empirical study on problems and solution techniques. J. Adv. Transportation.Crossref, Google Scholar · doi:10.1155/2017/9387302
[55] Todosijević R, Urošević D, Mladenović N, Hanafi S (2017) A geneal vaiable neighbohood seach fo solving the uncapacitated r-allocation p-hub median poblem. Optim. Lett. 11(6):1109-1121.Crossref, Google Scholar · Zbl 1381.90075 · doi:10.1007/s11590-015-0867-6
[56] Yaman H (2011) Allocation strategies in hub networks. Eur. J. Oper. Res. 211(3):442-451.Crossref, Google Scholar · Zbl 1237.90137 · doi:10.1016/j.ejor.2011.01.014
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.