×

The Dirichlet problem for elliptic operators having a BMO anti-symmetric part. (English) Zbl 1496.35184

Authors’ abstract: The present paper establishes the first result on the absolute continuity of elliptic measure with respect to the Lebesgue measure for a divergence form elliptic operator with non-smooth coefficients that have a BMO anti-symmetric part. In particular, the coefficients are not necessarily bounded. We prove that the Dirichlet problem for elliptic equation \(\text{div}(A\nabla u)=0\) in the upper half-space \((x,t)\in{\mathbb{R}}^{n+1}_+\) is uniquely solvable when \(n\geq 2\) and the boundary data is in \(L^p({\mathbb{R}}^n,dx)\) for some \(p\in (1,\infty).\) This result is equivalent to saying that the elliptic measure associated to \(L\) belongs to the \(A_\infty\) class with respect to the Lebesgue measure \(dx,\) a quantitative version of absolute continuity.

MSC:

35J15 Second-order elliptic equations
35B65 Smoothness and regularity of solutions to PDEs
35R05 PDEs with low regular coefficients and/or low regular data
42B25 Maximal functions, Littlewood-Paley theory
42B37 Harmonic analysis and PDEs

References:

[1] Auscher, P.; Egert, M.; Nyström, K., The Dirichlet problem for second order parabolic operators in divergence form, J. l’Ecole Polytech., 5, 407-441 (2018) · Zbl 1419.35081
[2] Auscher, P.; Hofmann, S.; Lacey, M.; McIntosh, A.; Tchamitchian, P., The solution of the Kato square root problem for second order elliptic operators on \(\mathbb{R}^n\), Ann. Math., 156, 2, 633-654 (2002) · Zbl 1128.35316 · doi:10.2307/3597201
[3] Auscher, P.; Hofmann, S.; Lewis, JL; Tchamitchian, P., Extrapolation of Carleson measures and the analyticity of Kato’s square-root operators, Acta Math., 187, 2, 161-190 (2001) · Zbl 1163.35346 · doi:10.1007/BF02392615
[4] Caffarelli, L.; Fabes, E.; Mortola, S.; Salsa, S., Boundary behavior of nonnegative solutions of elliptic operators in divergence form, Indiana Univ. Math. J., 30, 4, 621-640 (1981) · Zbl 0512.35038 · doi:10.1512/iumj.1981.30.30049
[5] Caffarelli, LA; Fabes, EB; Kenig, CE, Completely singular elliptic-harmonic measures, Indiana Univ. Math. J., 30, 6, 917-924 (1981) · Zbl 0482.35020 · doi:10.1512/iumj.1981.30.30067
[6] Coifman, R.; Lions, P.; Meyer, Y.; Semmes, S., Compensated compactness and Hardy spaces, J. Math. Pures Appl., 72, 9, 247-286 (1993) · Zbl 0864.42009
[7] Escauriaza, L.; Hofmann, S., Kato square root problem with unbounded leading coefficients, Proc. Am. Math. Soc., 146, 12, 5295-5310 (2018) · Zbl 1400.35041 · doi:10.1090/proc/14224
[8] Evans, LC, Partial Differential Equations (1998), Providence: American Mathematical Society, Providence · Zbl 0902.35002
[9] Giaquinta, M., Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems (1983), Princeton: Princeton University Press, Princeton · Zbl 0516.49003
[10] Hofmann, S.; Kenig, C.; Mayboroda, S.; Pipher, J., Square function/non-tangential maximal function estimates and the Dirichlet problem for non-symmetric elliptic operators, J. Am. Math. Soc., 28, 2, 483-529 (2015) · Zbl 1326.42028 · doi:10.1090/S0894-0347-2014-00805-5
[11] Hofmann, S.; Lacey, M.; McIntosh, A., The solution of the Kato problem for divergence form elliptic operators with Gaussian heat kernel bounds, Ann. Math., 156, 623-631 (2002) · Zbl 1128.35317 · doi:10.2307/3597200
[12] Hofmann, S.; Le, P.; Morris, AJ, Carleson measure estimates and the Dirichlet problem for degenerate elliptic equations, Anal. PDE, 12, 8, 2095-2146 (2019) · Zbl 1435.35148 · doi:10.2140/apde.2019.12.2095
[13] Hofmann, S., Li, L., Mayboroda, S., Pipher, J.: \(L^p\) theory for the square roots and square functions of elliptic operators having a BMO anti-symmetric part. arXiv preprint arXiv:1908.01030 (2019)
[14] Jerison, DS; Kenig, CE, The Dirichlet problem in non-smooth domains, Ann. Math., 113, 2, 367-382 (1981) · Zbl 0434.35027 · doi:10.2307/2006988
[15] Kenig, C.; Kirchheim, B.; Pipher, J.; Toro, T., Square functions and the \(A_{\infty }\) property of elliptic measures, J. Geom. Anal., 26, 3, 2383-2410 (2016) · Zbl 1386.35070 · doi:10.1007/s12220-015-9630-6
[16] Kenig, C.; Koch, H.; Pipher, J.; Toro, T., A new approach to absolute continuity of elliptic measure, with applications to non-symmetric equations, Adv. Math., 153, 2, 231-298 (2000) · Zbl 0958.35025 · doi:10.1006/aima.1999.1899
[17] Kenig, CE, Harmonic Analysis Techniques for Second Order Elliptic Boundary Value Problems (1994), Providence: American Mathematical Society, Providence · Zbl 0812.35001 · doi:10.1090/cbms/083
[18] Li, L.; Pipher, J., Boundary behavior of solutions of elliptic operators in divergence form with a BMO anti-symmetric part, Commun. Partial Differ. Equ., 44, 2, 156-204 (2019) · Zbl 1418.35118 · doi:10.1080/03605302.2018.1542437
[19] Lieberman, GM, Second order Parabolic Differential Equations (1996), Singapore: World Scientific, Singapore · Zbl 0884.35001 · doi:10.1142/3302
[20] Modica, L.; Mortola, S., Construction of a singular elliptic-harmonic measure, Manuscr. Math., 33, 1, 81-98 (1980) · Zbl 0505.35039 · doi:10.1007/BF01298340
[21] Qian, Z.; Xi, G., Parabolic equations with singular divergence-free drift vector fields, J. Lond. Math. Soc., 100, 1, 17-40 (2019) · Zbl 1423.35139 · doi:10.1112/jlms.12202
[22] Seregin, G.; Silvestre, L.; Šverák, V.; Zlatoš, A., On divergence-free drifts, J. Differ. Equ., 252, 1, 505-540 (2012) · Zbl 1232.35027 · doi:10.1016/j.jde.2011.08.039
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.