×

Quantum tomography and the quantum Radon transform. (English) Zbl 1483.46073

Summary: A general framework for the tomographical description of states, that includes, among other tomographical schemes, the classical Radon transform, quantum state tomography and group quantum tomography, in the setting of \(C^\ast\)-algebras is presented. Given a \(C^\ast\)-algebra, the main ingredients for a tomographical description of its states are identified: A generalized sampling theory and a positive transform. A generalization of the notion of dual tomographic pair provides the background for a sampling theory on \(C^\ast\)-algebras and, an extension of Bochner’s theorem for functions of positive type, the positive transform.
The abstract theory is realized by using dynamical systems, that is, groups represented on \(C^\ast\)-algebra. Using a fiducial state and the corresponding GNS construction, explicit expressions for tomograms associated with states defined by density operators on the corresponding Hilbert spade are obtained. In particular a general quantum version of the classical definition of the Radon transform is presented. The theory is completed by proving that if the representation of the group is square integrable, the representation itself defines a dual tomographic map and explicit reconstruction formulas are obtained by making a judicious use of the theory of frames. A few significant examples are discussed that illustrate the use and scope of the theory.

MSC:

46L60 Applications of selfadjoint operator algebras to physics
44A12 Radon transform
37A55 Dynamical systems and the theory of \(C^*\)-algebras
47N50 Applications of operator theory in the physical sciences
81P18 Quantum state tomography, quantum state discrimination

References:

[1] N. I. Akhiezer and I. M. Glazman, Theory of Linear Operators in Hilbert Spaces, Dover Publ., New York, 1963.
[2] E. M. Alfsen; F. W. Shultz, State spaces of Jordan algebras, Acta Math., 140, 155-190 (1978) · Zbl 0397.46066 · doi:10.1007/BF02392307
[3] P. Aniello, V. I. Man’ko and G. Marmo, Frame transforms, star products and quantum mechanics on phase space, Journal of Physics A: Mathematical and Theoretical, 41 (2008), 285304, 40 pp. · Zbl 1189.81125
[4] J. Arthur, Characters, harmonic analysis and an \(L^2\)-Lefschetz formula, In The mathematical heritage of Hermann Weyl, Proc. Sym. Pure Math., 48 1988,167-179. · Zbl 0671.22007
[5] M. Asorey, A. Ibort, G. Marmo and F. Ventriglia, Quantum Tomography twenty years later, Phys. Scr., 90 (2015), 074031.
[6] M. Asorey, P. Facchi, V. I. Man’ko, G. Marmo, S. Pascazio and E. C. G. Sudarshan, Generalized tomographic maps and star-product formalism, Phys. Scr., 90 (2015), 065101.
[7] J. Bertrand and P. Bertrand, A tomographic approach to Wigner’s function, Foundations of Physics, 17 (1987), 397-405.
[8] A. del Campo, V. I. Man’ko and G. Marmo, Symplectic tomography of ultracold gases in tight waveguides, Phys. Rev. A., 78 (2008), 025602.
[9] G. Cassinelli; G. M. D’Ariano; E. De Vito; A. Levrero, Group theoretical quantum tomography, Journal of Mathematical Physics, 41, 7940-7951 (2000) · Zbl 0974.81072 · doi:10.1063/1.1323497
[10] F. M. Ciaglia; F. Di Cosmo; A. Ibort; G. Marmo, Dynamical aspects in the quantizer-dequantizer formalism, Annals of Physics, 385, 769-781 (2017) · Zbl 1372.81064 · doi:10.1016/j.aop.2017.08.025
[11] K. Banaszek, G. M. D’Ariano, P. Kumar and M. F. Sacchi, Maximum-likelihood estimation of the density matrix, Phys. Rev., A61 (1999), 010304(R).
[12] G. M. D’Ariano, Universal quantum estimation, Phys. Lett., A268, 151-157 (2000) · Zbl 0948.81516 · doi:10.1016/S0375-9601(00)00164-X
[13] G. M. D’Ariano, M. G. A. Paris and M. F. Sacchi, Quantum tomography, Advances in Imaging and Electron Physics, 128 (2003), 205-308. arXiv: quant-ph/0302028.
[14] G. M. D’Ariano; L. Maccone; M. Paini, Spin tomography, J. Opt. B: Qiuantum Semiclass. Opt., 5, 77-84 (2003) · doi:10.1088/1464-4266/5/1/311
[15] I. Daubechies, Ten Lectures on Wavelets, SIAM, 1992.
[16] E. B. Davies, Spectral Theory and Differential Operators, Cambridge Univ. Press, Cambridge, U.K. 1995. · Zbl 0893.47004
[17] J. Diximier, \(C^*\)-Algebras, North Holand Publ. Co., Amsterdam-New York-Oxford, 1977. · Zbl 0372.46058
[18] M. Duflo; C. C. Moore, On the regular representation of a nonunimodular locally compact group, J. Funct. Anal., 21, 209-243 (1976) · Zbl 0317.43013 · doi:10.1016/0022-1236(76)90079-3
[19] E. Ercolessi, G. Marmo, G. Morandi and N. Mukunda, Wigner distributions in Quantum Mechanics, J. Phys.: Conf. Ser., 87 (2007), 012010. · Zbl 1026.81019
[20] G. Esposito, G. Marmo and G. Sudarshan, From Classical to Quantum Mechanics, Cambridge Univ. Press, Cambridge 2004. · Zbl 1086.81001
[21] P. Facchi; M. Ligabò, Classical and quantum aspects of tomography, AIP Conference Proceedings., 1260, 3-34 (2010) · Zbl 1330.81002
[22] F. Falceto, L. Ferro, A. Ibort and G. Marmo, Reduction of Lie-Jordan Banach algebras and quantum states, J. Phys. A: Math. Theor., 46 (2013), 015201, 14 pp. · Zbl 1281.46047
[23] H.R. Fernández-Morales, A.G. García, M.A. Hernández-Medina and M.J. Muñoz-Bouzo, On Some Sampling-Related Frames in \(U\)-Invariant Spaces, Abstract and Applied Analysis (2013), 761620, 14 pp. · Zbl 1470.94066
[24] M. Frank; D. R. Larson, Frames in Hilbert \(C^*\)-modules and \(C^*\)-algebras, J. Operator Theory, 48, 273-314 (2002) · Zbl 1029.46087
[25] A. Galindo and P. Pascual, Quantum Mechanics I, Springer-Verlag. Berlin 1990. · Zbl 0824.00008
[26] A. G. García, A brief walk through sampling theory, Advances in Imaging and Electron Physics, 124, 63-137 (2002) · doi:10.1016/S1076-5670(02)80042-8
[27] A. G. García; M. A. Hernández-Medina; G. Pérez-Villalón, Generalized sampling in shift-invariant spaces with multiple stable generators, Journal of Mathematical Analysis and Applications, 337, 69-84 (2008) · Zbl 1133.42048 · doi:10.1016/j.jmaa.2007.03.083
[28] A. G. García, M. A. Hernández-Medina and A. Ibort, Towards a quantum sampling theory: the case of finite groups, In: Marmo G., Martín de Diego D., Muñoz Lecanda M. (eds) Classical and Quantum Physics. Springer Proceedings in Physics, vol229. Springer, Cham., (2019) 203-223. arXiv:1510.08134 [math-ph].
[29] I. Gel’fand; M. Naimark, On the embedding of normed rings into the ring of operators in Hilbert space, Rec. Math. [Mat. Sbornik] N.S., 12, 197-217 (1943) · Zbl 0060.27006
[30] A. Gleason, Measures on the closed subspaces of a Hilbert space, Indiana Univ. Math. J., 6, 885-893 (1957) · Zbl 0078.28803 · doi:10.1512/iumj.1957.6.56050
[31] R. Haag, Local Quantum Physics: Fields, Particles, Algebras, Springer-Verlag. Berlin, 1996. · Zbl 0857.46057
[32] A. Ibort, V. I. Man’ko, G. Marmo, A. Simoni and F. Ventriglia, An introduction to the tomographic picture of quantum mechanics, Phys. Scr., 79 (2009), 065013. · Zbl 1170.81007
[33] A. Ibort, V. I. Man’ko, G. Marmo, A. Simoni, F. Ventrigilia, A generalized Wigner function on the space of irreducible representations of the Weyl-Heisenberg group and its transformation properties, J. Phys. A: Math. Theor., 42 (2009), 155302, 12 pp. · Zbl 1161.81393
[34] A. Ibort; V. I. Man’ko; G. Marmo; A. Simoni; F. Ventriglia, On the tomographic picture of quantum mechanics, Phys. Let. A., 374, 2614-2617 (2010) · Zbl 1237.81043 · doi:10.1016/j.physleta.2010.04.056
[35] A. Ibort, V. I. Man’ko, G. Marmo, A. Simoni and F. Ventriglia, Pedagogical presentation of a \(C^*\)-algebraic approach to quantum tomography, Phys. Scr., 84 (2011), 065006. · Zbl 1263.81103
[36] A. Ibort, A. López Yela and J. Moro, A new algorithm for computing branching rules and Clebsch-Gordan coefficients of unitary representations of compact groups, J. of Math. Phys., 58 (2017), 101702, 21 pp. · Zbl 1376.22017
[37] J. M. Jauch, Foundations of Quantum Mechanics, Reading, Mass.-London-Don Mills, Ont. 1968. · Zbl 0166.23301
[38] A. W. Joshi, Elements of Group Theory for Physicists, Third edition. A Halsted Press Book. John Wiley & Sons, Inc., New York, 1982 · Zbl 0561.20003
[39] R. V. Kadison, A representation theory for commutative topological algebras, Mem. Amer. Math. Soc., 7 (1951), 39 pp. · Zbl 0042.34801
[40] G. Kaiser, A Friendly Guide to Wavelets, Birkhäuser Boston, Inc., Boston, MA, 1994. · Zbl 0839.42011
[41] A. López-Yela, On the Tomographic Description of Quantum Systems: Theory and Applications, Ph.D. Thesis. Universidad Carlos III de Madrid (2015). http://hdl.handle.net/10016/22629
[42] V. I. Man’ko; O. V. Man’ko, Spin state tomography, J. of Experimental and Theoretical Physics, 85, 430-434 (1997) · doi:10.1134/1.558326
[43] O. V. Man’ko; V. I. Man’ko; G. Marmo, Alternative commutation relations, star products and tomography, Journal of Physics A: Mathematical and General, 35, 699-719 (2002) · Zbl 1041.81080 · doi:10.1088/0305-4470/35/3/315
[44] V. I. Man’ko, G. Marmo, A. Simoni, A. Stern and E. C. G. Sudarshan, On the meaning and interpretation of tomography in abstract Hilbert spaces, Phys. Lett. A, 351 (2006) 1-12. · Zbl 1234.81029
[45] M. A. \(Na{{\rm{\mathord{\buildrel{\lower3pt\hbox{\)\scriptscriptstyle\smile \(}} \over i} }}}\) mark, Normed Rings, P. Noordhoff N. V., Groningen 1964.
[46] F. Natterer, The Mathematics of Computerized Tomography, B. G. Teubner, Stuttgart; John Wiley & Sons, Ltd., Chichester, 1986. · Zbl 0617.92001
[47] J. v. Neumann, Zur Algebra der Funktionaloperationen und Theorie der normalen Operatoren, Math. Ann., 102, 370-427 (1930) · JFM 55.0825.02 · doi:10.1007/BF01782352
[48] D.-G. Welsch, T. Opatrny and W. Vogel, II Homodyne Detection and Quantum-State Reconstruction, Prog. Opt., vol. 39 (1999), 63-211.
[49] J. Radon, Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten, Proc. Sympos. Appl. Math., 27, Amer. Math. Soc., Providence, R.I., 1982. · JFM 46.0436.02
[50] M. Reed and B. Simon, Methods of modern mathematical physics. Vol. 1: Functional analysis, revised and enlarged edition., Academic Press., USA 1980. · Zbl 0459.46001
[51] I. E. Segal, Irreducible representations of operator algebras, Bull. Am. Math. Soc., 53, 73-88 (1947) · Zbl 0031.36001 · doi:10.1090/S0002-9904-1947-08742-5
[52] D. T. Smithey, M. Beck, M. G. Raymer and A. Faridani, Measurement of the Wigner distribution and the density matrix of a light mode using optical homodyne tomography: Application to squeezed states and the vacuum, Physical Review Letters, 70 (1993), 1244.
[53] M. H. Stone, On one-parameter unitary groups in Hilbert Space, Ann. Math., 33, 643-648 (1932) · Zbl 0005.16403 · doi:10.2307/1968538
[54] K. Vogel and H. Risken, Determination of quasiprobability distributions in terms of probability distributions for the rotated quadrature phase, Physical Review A, 40 (1989), 2847.
[55] E. Wigner, On the Quantum Correction for Thermodinamic Equilibrium, Phys. Rev., 40, 749-759 (1932) · Zbl 0004.38201 · doi:10.1103/PhysRev.40.749
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.