×

Convergence rates of Tikhonov regularization for recovering growth rates in a Lotka-Volterra competition model with diffusion. (English) Zbl 1473.35649

Summary: In this paper, we shall study the convergence rates of Tikhonov regularizations for the recovery of the growth rates in a Lotka-Volterra competition model with diffusion. The ill-posed inverse problem is transformed into a nonlinear minimization system by an appropriately selected version of Tikhonov regularization. The existence of the minimizers to the minimization system is demonstrated. We shall propose a new variational source condition, which will be rigorously verified under a Hölder type stability estimate. We will also derive the reasonable convergence rates under the new variational source condition.

MSC:

35R30 Inverse problems for PDEs
35K51 Initial-boundary value problems for second-order parabolic systems
35K57 Reaction-diffusion equations
41A25 Rate of convergence, degree of approximation
65M32 Numerical methods for inverse problems for initial value and initial-boundary value problems involving PDEs
92D25 Population dynamics (general)
Full Text: DOI

References:

[1] H. Amann, Compact embeddings of vector valued Sobolev and Besov spaces, Glasnik Matematički, 35, 161-177 (2000) · Zbl 0997.46029
[2] S. W. Anzengruber, B. Hofmann and R. Ramlau, On the interplay of basis smoothness and specific range conditions occurring in sparsity regularization, Inverse Problems, 29 (2013), 125002, 21 pp. · Zbl 1292.65056
[3] R. I. Bot; B. Hofmann, An extension of the variational inequality approach for nonlinear ill-posed problems, Journal of Integral Equations and Applications, 22, 369-392 (2010) · Zbl 1206.47060 · doi:10.1216/JIE-2010-22-3-369
[4] M. Burger, J. Flemming and B. Hofmann, Convergence rates in \(\ell^1\)-regularization if the sparsity assumption fails, Inverse Problems, 29 (2013), 025013, 16 pp. · Zbl 1262.49010
[5] D.-H. Chen, B. Hofmann and J. Zou, Elastic-net regularization versus \(\ell^1\)-regularization for linear inverse problems with quasi-sparse solutions, Inverse Problem, 33 (2017), 015004, 17 pp. · Zbl 06701168
[6] D.-H. Chen, D. Jiang and J. Zou, Convergence rates of Tikhonov regularizations for elliptic and parabolic inverse radiativity problems, Inverse Problem, 36 (2020), no. 7, 075001, 21 pp. · Zbl 1487.65060
[7] D.-H. Chen and I. Yousept, Variational source condition for ill-posed backward nonlinear Maxwell’s equations, Inverse Problem, 35 (2019), 025001, 25 pp. · Zbl 1414.35223
[8] I. D. Chueshov, Introduction to the Theory of Infinite-Dimensional Dissipative Systems, AKTA, Kharkiv, 1999. · Zbl 1100.37046
[9] E. C. M. Crooks; E. N. Dancer; D. Hilhorst; M. Mimura; H. Ninomiya, Spatial segregation limit of a competition-diffusion system with Dirichlet boundary conditions, Nonlinear Analysis: Real World Applications, 5, 645-665 (2004) · Zbl 1079.35008 · doi:10.1016/j.nonrwa.2004.01.004
[10] E. N. Dancer; Y. H. Du, Positive solutions for three-species competition system with diffusion I, General existence results, Nonlinear Anal., 24, 337-357 (1995) · Zbl 0824.35033 · doi:10.1016/0362-546X(94)E0063-M
[11] E. N. Dancer; Y. H. Du, Positive solutions for three-species competition system with diffusion II, The case of equal birth rates, Nonlinear Anal., 24, 359-373 (1995) · Zbl 0824.35034 · doi:10.1016/0362-546X(94)E0064-N
[12] E. N. Dancer; K. Wang; Z. Zhang, Dynamics of strongly competing systems with many species, Transactions of the American Mathematical Society, 364, 961-1005 (2012) · Zbl 1252.35284 · doi:10.1090/S0002-9947-2011-05488-7
[13] E. N. Dancer; Z. Zhang, Dynamics of Lotka-Volterra competition systems with large interaction, J. Differ. Equ., 182, 470-489 (2002) · Zbl 1006.35047 · doi:10.1006/jdeq.2001.4102
[14] H. W. Engl; K. Kunisch; A. Neubauer, Convergence rates for Tikhonov regularization of nonlinear ill-posed problems, Inverse Problems, 5, 523-540 (1989) · Zbl 0695.65037 · doi:10.1088/0266-5611/5/4/007
[15] H. W. Engl; J. Zou, A new approach to convergence rate analysis of Tikhonov regularization for parameter identification in heat conduction, Inverse Problems, 16, 1907-1923 (2000) · Zbl 0968.35124 · doi:10.1088/0266-5611/16/6/319
[16] J. Flemming, Theory and examples of variational regularization with non-metric fitting functionals, J. Inverse Ill-Posed Probl., 18, 677-699 (2010) · Zbl 1280.47062 · doi:10.1515/JIIP.2010.031
[17] B. Grammaticos; J. Moulin-Ollagnier; A. Ramani; J.-M. Strelcyn; S. Wojciechowski, Integrals of quadratic ordinary differential equations in \({{\mathbb R}}^3\): The Lotka-Volterra system, Phys. A, 163, 683-722 (1990) · Zbl 0714.34005 · doi:10.1016/0378-4371(90)90152-I
[18] M. Grasmair, Generalized Bregman distances and convergence rates for non-convex regularization methods, Inverse Problems, 26 (2010), 115014, 16 pp. · Zbl 1228.65086
[19] D. N. Hào and T. N. Quyen, Convergence rates for Tikhonov regularization of coefficient identification problems in Laplace-type equations, Inverse Problems, 26 (2010), 125014, 23 pp. · Zbl 1206.35256
[20] B. Hofmann; B. Kaltenbacher; C. Pöschl; O. Scherzer, A convergence rates result for Tikhonov regularization in Banach spaces with non-smooth operators, Inverse Problems, 23, 987-1010 (2007) · Zbl 1131.65046 · doi:10.1088/0266-5611/23/3/009
[21] B. Hofmann and P. Mathé, Parameter choice in Banach space regularization under variational inequalities, Inverse Problems, 28 (2012), 104006, 17 pp. · Zbl 1253.47041
[22] T. Hohage; F. Weilding, Characerizations of variational source conditions, converse results, and maxisets of spectral regularization methods, SIAM J. Numer. Anal., 55, 598-620 (2017) · Zbl 1432.65070 · doi:10.1137/16M1067445
[23] T. Hohage; F. Weilding, Variational source condition and stability estimates for inverse electromagnetic medium scattering problems, Inverse Problems Imaging, 11, 203-220 (2017) · Zbl 1417.78003 · doi:10.3934/ipi.2017010
[24] T. Hohage and F. Weilding, Verification of a variational source condition for acoustic inverse medium scattering problems, Inverse Problem, 31 (2015), 075006 14 pp. · Zbl 1321.35162
[25] G. Israel and A. M. Gasca, The Biology of Numbers, Science Networks. Historical Studies, 26. Birkhäuser, Basel, 2002. · Zbl 1010.01025
[26] D. Jiang, H. Feng and J. Zou, Convergence rates of Tikhonov regularizations for parameter identification in a parabolic-elliptic system, Inverse Problem, 28 (2012), 104002, 20pp. · Zbl 1254.35154
[27] Y. Kan-on, Bifurcation structure of positive stationary solutions for a Lotka-Volterra competition model with diffusion, II, Global structure, Discrete Contin. Dyn. Syst., 14, 135-148 (2006) · Zbl 1121.34045 · doi:10.3934/dcds.2006.14.135
[28] Y. Kan-on, Global bifurcation structure of stationary solutions for a Lotka-Volterra competition model, Discrete Contin. Dyn. Syst., 8, 147-162 (2002) · Zbl 1136.35314 · doi:10.3934/dcds.2002.8.147
[29] J. L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, Springer Science & Business Media, 2012.
[30] A. Lorz, J.-F. Pietschmann and M. Schlottbom, Parameter identification in a structured population model, Inverse Problems, 35 (2019), 095008. · Zbl 1422.92122
[31] A. E. Lotka, Elements of Mathematical Biology, Dover, New York, 1956. · Zbl 0074.14404
[32] K. Nakashima; T. Wakasa, Generation of interfaces for Lotka-Volterra competition-diffusion system with large interaction rates, J. Differ. Equ., 235, 586-608 (2007) · Zbl 1116.35007 · doi:10.1016/j.jde.2007.01.002
[33] L. Roques and M. Cristofol, The inverse problem of determining several coefficients in a nonlinear Lotka-Volterra system, Inverse Problems, 28 (2012), 075007. · Zbl 1247.35206
[34] V. Volterra, Lecions sur la Theorie Mathematique de la Lutte Pour la Vie, Gauthier Villars, Paris, 1931. · Zbl 0002.04202
[35] L. Weis, Operator-valued Fourier multiplier theorems and maximal \(L_p \)-regularity, Mathematische Annalen, 319, 735-758 (2001) · Zbl 0989.47025 · doi:10.1007/PL00004457
[36] A. Yagi, Abstract Parabolic Evolution Equations and Their Applications, Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2010. · Zbl 1190.35004
[37] M. Yamamoto, Carleman estimates for parabolic equations and applications, Inverse Problems, 25 (2009), 123013. · Zbl 1194.35512
[38] M. Yamamoto; J. Zou, Simultaneous reconstruction of the initial temperature and heat radiative coefficient, Inverse Problems, 17, 1181-1202 (2001) · Zbl 0987.35166 · doi:10.1088/0266-5611/17/4/340
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.