×

Global asymptotic regulation control for MIMO mechanical systems with unknown model parameters and disturbances. (English) Zbl 1432.70048

Summary: A global asymptotic regulation control scheme based on the adaptive disturbance estimation is proposed for the MIMO mechanical systems with unknown model parameters and disturbances. By transforming the motion model of the mechanical system and the disturbances into the parametric forms, respectively, the disturbance rejection control for the MIMO mechanical systems is converted into the adaptive control problem. The robust adaptive control law is then designed using the adaptive backstepping method. Stability analysis shows that the designed control law achieves the global asymptotic regulation of the output vector. Simulations on regulation control of two marine vessels verify the effectiveness of the proposed control scheme.

MSC:

70Q05 Control of mechanical systems
93C85 Automated systems (robots, etc.) in control theory
Full Text: DOI

References:

[1] Jin, X.: Iterative learning control for non-repetitive trajectory tracking of robot manipulators with joint position constraints and actuator faults. Int. J. Adapt. Control Signal Process. 31(6), 859-875 (2017) · Zbl 1366.93404 · doi:10.1002/acs.2734
[2] Chen, M., Shi, P., Lim, C.C.: Adaptive neural fault-tolerant control of a 3-DOF model helicopter system. IEEE Trans. Syst. Man Cybern. Syst. 46(2), 260-270 (2016) · doi:10.1109/TSMC.2015.2426140
[3] Wu, D.F., Ren, F.K., Qiao, L., Zhang, W.D.: Active disturbance rejection controller design for dynamically positioned vessels based on adaptive hybrid biogeography-based optimization and differential evolution. ISA Trans. 78, 56-65 (2018) · doi:10.1016/j.isatra.2017.10.010
[4] Park, J.H., Shen, H., Chang, X.H., Lee, T.H.: Reliable \[{\[ \mathscr{H}}_{\infty }H\]∞H_\infty H\]∞ Event-triggered control for Markov Jump Systems. In: Recent Advances in Control and Filtering of Dynamic Systems with Constrained. Springer, Cham (2018)
[5] Sun, H.B., Li, S.H., Sun, C.Y.: Finite time integral sliding mode control of hypersonic vehicles. Nonlinear Dynamics 73(1-2), 229-244 (2013) · Zbl 1281.70016 · doi:10.1007/s11071-013-0780-4
[6] Gu, X.D., Zhu, W.Q.: Stochastic optimal control of predatorcprey ecosystem by using stochastic maximum principle. Nonlinear Dynamics 85(2), 1177-1184 (2016) · Zbl 1355.93212 · doi:10.1007/s11071-016-2752-y
[7] Zhang, C.L., Li, S.H., Yang, N.: A generalized active disturbance rejection control method for nonlinear uncertain systems subject to additive disturbance. Nonlinear Dynamics 83(4), 2361-2372 (2016) · Zbl 1353.93075 · doi:10.1007/s11071-015-2487-1
[8] Liu, H., Guo, L., Zhang, Y.M.: An anti-disturbance PD control scheme for attitude control and stabilization of flexible spacecrafts. Nonlinear Dynamics 67(3), 2081-2088 (2012) · Zbl 1243.93068 · doi:10.1007/s11071-011-0130-3
[9] Cao, S.Y., Zhao, Y.F.: Anti-disturbance fault-tolerant attitude control for satellites subject to multiple disturbances and actuator saturation. Nonlinear Dynamics 89(4), 2657-2667 (2017) · Zbl 1377.93115 · doi:10.1007/s11071-017-3614-y
[10] Chen, M., Wu, Q.X., Jiang, C.S.: Disturbance-observer-based robust synchronization control of uncertain chaotic systems. Nonlinear Dynamics 70(4), 2421-22432 (2012) · doi:10.1007/s11071-012-0630-9
[11] Chen, M., Chen, W.H.: Sliding mode control for a class of uncertain nonlinear system based on disturbance observer. Int. J. Adapt. Control Signal Process. 24(1), 51-64 (2010) · Zbl 1185.93039
[12] Chen, W.H., Yang, J., Guo, L., Li, S.H.: Disturbance-observer-based control and related methodsłan overview. IEEE Trans. Ind. Electron. 63(2), 1083-1095 (2016) · doi:10.1109/TIE.2015.2478397
[13] Guo, L.: Anti-disturbance Control for Systems with Multiple Disturbances. CRC Press, Boca Raton (2014)
[14] Li, S.H., Yang, J., Chen, W.H., Chen, X.S.: Disturbance Observer-based Control-methods and Applications. CRC Press, Boca Raton, FL, USA (2014)
[15] Ohishi, K., Nakao, M., Ohnishi, K., Miyachi, K.: Microprocessor-controlled DC motor for load-insensitive position servo system. IEEE Trans. Ind. Electron. IE-34(1), 44-49 (1987) · doi:10.1109/TIE.1987.350923
[16] Chen, W.H., Ballance, D.J., Gawthrop, P.J., O’Reilly, J.: A nonlinear disturbance observer for robotic manipulators. IEEE Trans. Ind. Electron. 47(4), 932-938 (2000) · doi:10.1109/41.857974
[17] Chen, W.H.: Disturbance observer-based control for nonlinear systems. IEEE/ASME Trans. Mechatron. 9(4), 706-710 (2004) · doi:10.1109/TMECH.2004.839034
[18] Guo, L., Chen, W.H.: Disturbance attenuation and rejection for systems with nonlinearity via DOBC approach. Int. J. Robust Nonlinear Control 15(3), 109-125 (2005) · Zbl 1078.93030 · doi:10.1002/rnc.978
[19] Wei, X.J., Guo, L.: Composite disturbance-observer-based control and terminal sliding mode control for non-linear systems with disturbances. Int. J. Control 82(6), 1082-1098 (2009) · Zbl 1168.93322 · doi:10.1080/00207170802455339
[20] Wei, X.J., Wu, Z.J., Karimi, H.R.: Disturbance observer-based disturbance attenuation control for a class of stochastic systems. Automatica 63, 21-25 (2016) · Zbl 1329.93129 · doi:10.1016/j.automatica.2015.10.019
[21] Wei, X.J., Zhang, H.F., Sun, S.X., Karimi, H.R.: Composite hierarchical antidisturbance control for a class of discrete-time stochastic systems. Int. J. Robust Nonlinear Control 28(9), 3292-3302 (2018) · Zbl 1396.93112 · doi:10.1002/rnc.4080
[22] Yao, X.M., Guo, L.: Composite anti-disturbance control for Markovian jump nonlinear systems via disturbance observer. Automatica 49(8), 2538-2545 (2013) · Zbl 1364.93102 · doi:10.1016/j.automatica.2013.05.002
[23] Yao, X.M., Guo, L., Wu, L.G., Dong, H.R.: Static anti-windup design for nonlinear Markovian jump systems with multiple disturbances. Inf. Sci. 418-419, 169-183 (2017) · Zbl 1451.93378 · doi:10.1016/j.ins.2017.08.006
[24] Basturk, H.I., Krstić, M.: Adaptive wave cancelation by acceleration feedback for ramp-connected air cushion-actuated surface effect ships. Automatica 49(9), 2591-2602 (2013) · Zbl 1364.93530 · doi:10.1016/j.automatica.2013.05.017
[25] Hu, X., Du, J.L., Sun, Y.Q.: Robust adaptive control for dynamic positioning of ships. IEEE J. Ocean. Eng. 42(4), 826-835 (2017) · doi:10.1109/JOE.2017.2651242
[26] Du, J.L., Hu, X., Krstić, M., Sun, Y.Q.: Dynamic positioning of ships with unknown parameters and disturbances. Control Eng. Pract. 76, 22-30 (2018) · doi:10.1016/j.conengprac.2018.03.015
[27] Ding, Z.T.: Asymptotic rejection of unknown sinusoidal disturbances in nonlinear. Automatica 43(1), 174-177 (2007) · doi:10.1016/j.automatica.2006.08.006
[28] Wen, X.Y., Meng, H., Li, Z.Q.: Estimation of unknown frequency disturbance based on system output using virtual disturbance observer. In: Proceeding of the 2016 IEEE International Conference on Industrial Technology, pp. 1771-1776. Taipei, Taiwan (2016)
[29] Shen, H., Li, F., Wu, Z.G., Park, J.H., Sreeram, V.: Fuzzy-model-based non-fragile control for nonlinear singularly perturbed systems with semi-Markov jump parameters. IEEE Trans. Fuzzy Syst. pp. 1-12 (2018). https://doi.org/10.1109/TFUZZ.2018.2832614
[30] Shen, H., Li, F., Xu, S.Y., Sreeram, V.: Slow state variables feedback stabilization for semi-Markov jump systems with singular perturbations. IEEE Trans. Autom. Control 63(8), 2709-2714 (2018) · Zbl 1423.93404 · doi:10.1109/TAC.2017.2774006
[31] Sun, H.B., Guo, L.: Neural network-based DOBC for a class of nonlinear systems with unmatched disturbances. IEEE Trans. Neural Netw. Learn. Syst. 28(2), 482-489 (2017) · doi:10.1109/TNNLS.2015.2511450
[32] Wei, X.J., Chen, N.: Composite hierarchical anti-disturbance control for nonlinear systems with DOBC and fuzzy control. Int. J. Robust Nonlinear Control 24(2), 1052-1060 (2016)
[33] Yang, J., Ding, Z.T., Chen, W.H., Li, S.H.: Output-based disturbance rejection control for non-linear uncertain systems with unknown frequency disturbances using an observer backstepping approach. IET Control Theory Appl. 10(9), 362-373 (2014)
[34] Chen, M., Tao, G., Jiang, B.: Dynamic surface control using neural networks for a class of uncertain nonlinear systems with input saturation. IEEE Trans. Neural Netw. Learn. Syst. 26(9), 2086-2097 (2015) · doi:10.1109/TNNLS.2014.2360933
[35] Zheng, Z.W., Sun, L., Xie, L.H.: Error-constrained LOS path following of a surface vessel with actuator saturation and faults. IEEE Trans. Syst. Man Cybern. Syst. pp. 1-12 (2018). https://doi.org/10.1109/TSMC.2017.2717850
[36] Nikiforov, V.O.: Observers of external deterministic disturbances II. Objects with unknown parameters. Autom. Remote Control 65(10), 1531-1541 (2004) · Zbl 1082.93004 · doi:10.1023/B:AURC.0000044264.74470.48
[37] Li, Y.M., Tong, S.C., Li, T.S.: Adaptive fuzzy backstepping control of static var compensator based on state observer. Nonlinear Dynamics 73(1-2), 133-142 (2013) · Zbl 1281.93060 · doi:10.1007/s11071-013-0773-3
[38] Li, Y.M., Ren, C.E., Tong, S.C.: Adaptive fuzzy backstepping output feedback control of nonlinear uncertain time-delay systems based on high-gain filters. Nonlinear Dynamics 69(3), 781-792 (2012) · Zbl 1253.93073 · doi:10.1007/s11071-011-0304-z
[39] Wu, Z.J., Xie, X.J., Shi, P., Xia, Y.Q.: Backstepping controller design for a class of stochastic nonlinear systems with Markovian switching. Automatica 45(4), 997-1004 (2009) · Zbl 1162.93044 · doi:10.1016/j.automatica.2008.12.002
[40] Krstić, M., Kanellakopoulos, I., Kokotović, P.: Nonlinear Adapt. Control Design. John Wiley & Sons Inc, New York, NY, USA (1995) · Zbl 0763.93043
[41] Ge, S.S., Wang, J.: Robust adaptive tracking for time-varying uncertain nonlinear systems with unknown control coefficients. IEEE Trans. Autom. Control 48(8), 1463-1469 (2003) · Zbl 1364.93704 · doi:10.1109/TAC.2003.815049
[42] Cai, Z., de Queiroz, M.S., Dawson, D.M.: A sufficiently smooth projection operator. IEEE Trans. Autom. Control 51(1), 135-139 (2006) · Zbl 1366.93283 · doi:10.1109/TAC.2005.861704
[43] Fossen, T.I., Strand, J.P.: Passive nonlinear observer design for ships using Lyapunov methods: full-scale experiments with a supply vessel. Automatica 35(1), 3-16 (1999) · Zbl 0945.93589 · doi:10.1016/S0005-1098(98)00121-6
[44] Torsetnes, G.: Nonlinear control and observer design for dynamic positioning using contraction theory. In: Master’s thesis, Norwegian University of Science and Technology, Trondheim, Norway (2004)
[45] de Souza, E., Bhattacharyya, S.P.: Controllability, observability and the solution of \[\text{ AX }-\text{ XB }=\text{ C }\] AX-XB=C. Linear Algebra Appl. 39, 167-188 (1981) · Zbl 0468.15012 · doi:10.1016/0024-3795(81)90301-3
[46] Tao, G.: A simple alternative to the Barbalat lemma. IEEE Trans. Autom. Control 42(5), 698 (1997) · Zbl 0881.93070 · doi:10.1109/9.580878
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.