×

Optimal control of PDEs in a complex space setting: application to the Schrödinger equation. (English) Zbl 1412.49051

Summary: In this paper, we discuss optimality conditions for abstract optimization problems over complex spaces. We then apply these results to optimal control problems with a semigroup structure. As an application we detail the case when the state equation is the Schrödinger one, with pointwise constraints on the “bilinear” control. We derive first and second order optimality conditions and address, in particular, the case that the control enters affine in the cost function.

MSC:

49K27 Optimality conditions for problems in abstract spaces
49K20 Optimality conditions for problems involving partial differential equations
35J10 Schrödinger operator, Schrödinger equation

References:

[1] M. S. Aronna, J. F. Bonnans, and B. S. Goh, Second order analysis of control-affine problems with scalar state constraint, Math. Program., 160 (2016), pp. 115-147. · Zbl 1352.49020
[2] M. S. Aronna, J. F. Bonnans, A. V. Dmitruk, and P. A. Lotito, Quadratic order conditions for bang-singular extremals, Numer. Algebra, Control Optim., 2 (2012), pp. 511-546. · Zbl 1252.49028
[3] M. S. Aronna, J. F. Bonnans, and A. Kröner, Optimal control of bilinear systems in a complex space setting, IFAC-PapersOnLine, 50 (2017), pp. 2872-2877.
[4] M. S. Aronna, J. F. Bonnans, and A. Kröner, Correction to: Optimal control of infinite dimensional bilinear systems: Application to the heat and wave equations, Math. Program., 170 (2018), pp. 569-570. · Zbl 1447.49037
[5] M. S. Aronna, J. F. Bonnans, and A. Kröner, Optimal control of infinite dimensional bilinear systems: Application to the heat and wave equations, Math. Program., 168 (2018), pp. 717-757. · Zbl 1454.49028
[6] J.-P. Aubin, Un théorème de compacité, C. R. Acad. Sci. Paris, 256 (1963), pp. 5042-5044. · Zbl 0195.13002
[7] J. M. Ball, J. E. Marsden, and M. Slemrod, Controllability for distributed bilinear systems, SIAM J. Control Optim., 20 (1982), pp. 575-597. · Zbl 0485.93015
[8] J. M. Ball, Strongly continuous semigroups, weak solutions, and the variation of constants formula, Proc. Amer. Math. Soc., 63 (1977), pp. 370-373. · Zbl 0353.47017
[9] L. Baudouin, O. Kavian, and J.-P. Puel, Regularity for a Schrödinger equation with singular potentials and application to bilinear optimal control, J. Differential Equations, 216 (2005), pp. 188-222. · Zbl 1109.35094
[10] L. Baudouin and J. Salomon, Constructive solution of a bilinear optimal control problem for a Schrödinger equation, Systems Control Lett., 57 (2008), pp. 453-464. · Zbl 1153.49023
[11] T. Bayen, J. F. Bonnans, and F. J. Silva, Characterization of local quadratic growth for strong minima in the optimal control of semi-linear elliptic equations, Trans. Amer. Math. Soc., 366 (2014), pp. 2063-2087. · Zbl 1297.49004
[12] T. Bayen and F. J. Silva, Second Order Analysis for Strong Solutions in the Optimal Control of Parabolic Equations, SIAM J. Control Optim., 54 (2016), pp. 819-844. · Zbl 1355.49003
[13] K. Beauchard, Contribution à létude de la contrôlabilité et de la stabilisation de l’équation de Schrödinger, Ph.D. thesis, Université Paris-Sud, Paris, 2005.
[14] K. Beauchard, J. M. Coron, and H. Teismann, Minimal time for the bilinear control of Schrödinger equations, Systems Control Lett., 71 (2014), pp. 1-6. · Zbl 1296.93076
[15] K. Beauchard and M. Morancey, Local controllability of \(1\) D Schrödinger equations with bilinear control and minimal time, Math. Control Relat. Fields, 4 (2014), pp. 125-160. · Zbl 1281.93016
[16] M. Bergounioux and D. Tiba, General optimality conditions for constrained convex control problems, SIAM J. Control Optim., 34 (1996), pp. 698-711. · Zbl 0859.49026
[17] J. F. Bonnans, Optimal control of a semilinear parabolic equation with singular arcs, Optim. Methods Softw., 29 (2014), pp. 964-978. · Zbl 1301.49053
[18] J. F. Bonnans and P. Jaisson, Optimal control of a parabolic equation with time-dependent state constraints, SIAM J. Control Optim., 48 (2010), pp. 4550-4571. · Zbl 1208.49024
[19] J. F. Bonnans and N. P. Osmolovskiĭ, Second-order analysis of optimal control problems with control and initial-final state constraints, J. Convex Anal., 17 (2010), pp. 885-913. · Zbl 1207.49020
[20] J. F. Bonnans and A. Shapiro, Perturbation Analysis of Optimization Problems, Springer Ser. Oper. Res., Springer, New York, 2000. · Zbl 0966.49001
[21] J. F. Bonnans and D. Tiba, Control problems with mixed constraints and application to an optimal investment problem, Math. Rep. (Bucur.), 11 (2009), pp. 293-306. · Zbl 1212.49037
[22] U. Boscain, M. Caponigro, and M. Sigalotti, A weak spectral condition for the controllability of the bilinear Schrödinger equation with application to the control of a rotating planar molecule, Comm. Math. Phys., 311 (2012), pp. 423-455. · Zbl 1267.35177
[23] E. Casas, Second order analysis for bang-bang control problems of PDEs, SIAM J. Control Optim., 50 (2012), pp. 2355-2372. · Zbl 1257.49021
[24] E. Casas, C. Clason, and K. Kunisch, Parabolic control problems in measure spaces with sparse solutions, SIAM J. Control Optim., 51 (2013), pp. 28-63. · Zbl 1266.49037
[25] E. Casas and F. Tröltzsch, Second-order optimality conditions for weak and strong local solutions of parabolic optimal control problems, Vietnam J. Math., 44 (2016), pp. 181-202. · Zbl 1337.49038
[26] A. V. Dmitruk, Quadratic conditions for a weak minimum for singular regimes in optimal control problems, Sov. Math. Dokl., 18 (1977), pp. 418-422. · Zbl 0385.49008
[27] A. V. Dmitruk, Quadratic conditions for the Pontryagin minimum in an optimal control problem linear with respect to control. II. Theorems on the relaxing of constraints on the equality, Izv. Akad. Nauk SSSR Ser. Mat., 51 (1987), pp. 812-832.
[28] N. Dunford and J. Schwartz, Linear Operators, Vol. I, Interscience, New York, 1958. · Zbl 0084.10402
[29] H. O. Fattorini, Infinite dimensional linear control systems, North-Holland Math. Stud. 201, Elsevier, Amsterdam, 2005. · Zbl 1135.93001
[30] H. O. Fattorini and H. Frankowska, Necessary conditions for infinite-dimensional control problems, Math. Control Signals Systems, 4 (1991), pp. 41-67. · Zbl 0737.49017
[31] H. Frankowska and D. Tonon, The Goh necessary optimality conditions for the Mayer problem with control constraints, 52nd IEEE Conference on Decision and Control, IEEE, Piscataway, NJ, 2013, pp. 538-543.
[32] G. Friesecke, F. Henneke, and K. Kunisch, Frequency-sparse optimal quantum control, Math. Control Relat. Fields, 8 (2018), pp. 155-176. · Zbl 1407.49006
[33] B. S. Goh, The second variation for the singular Bolza problem, J. SIAM Control, 4 (1966), pp. 309-325. · Zbl 0146.11906
[34] H. Goldberg and F. Tröltzsch, Second-order sufficient optimality conditions for a class of nonlinear parabolic boundary control problems, SIAM J. Control Optim., 31 (1993), pp. 1007-1025. · Zbl 0787.49011
[35] M. Hintermüller, D. Marahrens, P. A. Markowich, and C. Sparber, Optimal bilinear control of Gross-Pitaevskii equations, SIAM J. Control Optim., 51 (2013), pp. 2509-2543. · Zbl 1277.49005
[36] K. Ito and K. Kunisch, Optimal bilinear control of an abstract Schrödinger equation, SIAM J. Control Optim., 46 (2007), pp. 274-287. · Zbl 1136.35089
[37] H. J. Kelley, A second variation test for singular extremals, AIAA Journal, 2 (1964), pp. 1380-1382. · Zbl 0136.10101
[38] X. Li and Y. Yao, Maximum principle of distributed parameter systems with time lags, Lect. Notes Control Inf. Sci. 75, Springer, New York, 1985, pp. 410-427. · Zbl 0594.49018
[39] X. Li and J. Yong, Necessary conditions for optimal control of distributed parameter systems, SIAM J. Control Optim., 29 (1991), pp. 895-908. · Zbl 0733.49025
[40] J.-L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications. Vol. I, Grundlehren Math. Wiss. 181, Springer, New York, 1972. · Zbl 0223.35039
[41] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Appl. Math. Sci. 44, Springer, New York, 1983. · Zbl 0516.47023
[42] L. Poggiolini and G. Stefani, Sufficient optimality conditions for a bang-singular extremal in the minimum time problem, Control Cybernet., 37 (2008), pp. 469-490. · Zbl 1235.49054
[43] S. M. Robinson, First order conditions for general nonlinear optimization, SIAM J. Appl. Math., 30 (1976), pp. 597-607. · Zbl 0364.90093
[44] F. Tröltzsch, Regular Lagrange multipliers for control problems with mixed pointwise control-state constraints, SIAM J. Optim., 15 (2004), pp. 616-634. · Zbl 1083.49018
[45] F. Tröltzsch, Optimal Control of Partial Differential Equations, Grad. Stud. Math. 112, American Mathematical Society, Providence, RI, 2010. · Zbl 1195.49001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.