×

Null controllability for parabolic operators with interior degeneracy and one-sided control. (English) Zbl 1410.35076

The authors study the parabolic operator \[ P_{\alpha} u = u_t - (|x|^{\alpha} u_x)_x \] for \(- 1 < x < 1\), and \(\alpha \in (0, 2)\). Note that this operator degenerates at the interior point \(x = 0\). The authors study the null controllability of \(P_{\alpha}\) for locally distributed controls acting only on one side of the origin (that is, on some interval \((a, b)\) with \(0 < a < b < 1\)). They prove that \(P\) is null controllable if and only if it is weakly degenerate, that is, \(\alpha \in (0, 1)\). So, in the strongly degenerate case \(\alpha \in [1, 2)\) in order to steer the system to zero, one needs controls to act on both sides of the point of degeneracy. This very interesting result is proved through spectral analysis and moment method. The authors also provide numerical evidence to illustrate their theoretical results.

MSC:

35K65 Degenerate parabolic equations
33C10 Bessel and Airy functions, cylinder functions, \({}_0F_1\)
93B05 Controllability
93B60 Eigenvalue problems
35P10 Completeness of eigenfunctions and eigenfunction expansions in context of PDEs

References:

[1] F. Alabau-Boussouira, P. Cannarsa, and G. Fragnelli, {\it Carleman estimates for degenerate parabolic operators with applications to null controllability}, J. Evol. Equ., 6 (2006), pp. 161-204, . · Zbl 1103.35052
[2] K. Beauchard, P. Cannarsa, and R. Guglielmi, {\it Null controllability of Grushin-type operators in dimension two}, J. Eur. Math. Soc. (JEMS), 16 (2014), pp. 67-101, . · Zbl 1293.35148
[3] K. Beauchard, L. Miller, and M. Morancey, {\it 2D Grushin-type equations: Minimal time and null controllable data}, J. Differential Equations, 259 (2015), pp. 5813-5845, . · Zbl 1321.35098
[4] F. Black and M. Scholes, {\it The pricing of options and corporate liabilities}, J. Polit. Econ., 81 (1973), pp. 637-654, . · Zbl 1092.91524
[5] F. Boyer, {\it On the penalised HUM approach and its applications to the numerical approximation of null-controls for parabolic problems}, ESAIM, Proc., 41 (2013), pp. 15-58. · Zbl 1329.49044
[6] F. Boyer, F. Hubert, and J. Le Rousseau, {\it Discrete Carleman estimates for elliptic operators and uniform controllability of semi-discretized parabolic equations}, J. Math. Pures Appl. (9), 93 (2010), pp. 240-276, . · Zbl 1196.35060
[7] F. Boyer, F. Hubert, and J. Le Rousseau, {\it Uniform controllability properties for space/time-discretized parabolic equations}, Numer. Math., 118 (2011), pp. 601-661, . · Zbl 1222.93029
[8] M. I. Budyko, {\it The effect of solar radiation variations on the climate of the earth}, Tellus, 21 (1969), pp. 611-619.
[9] P. Cannarsa, R. Ferretti, and P. Martinez, {\it Null controllability of parabolic equations with interior degeneracy and one-sided control}, preprint, arXiv:1807.00026, 2018. · Zbl 1410.35076
[10] P. Cannarsa, P. Martinez, and J. Vancostenoble, {\it Carleman estimates for a class of degenerate parabolic operators}, SIAM J. Control Optim., 47 (2008), pp. 1-19, . · Zbl 1168.35025
[11] P. Cannarsa, P. Martinez, and J. Vancostenoble, {\it Global Carleman Estimates for Degenerate Parabolic Operators with Applications}, Mem. Amer. Math. Soc. 239, AMS, Providence, RI, 2016, . · Zbl 1328.35114
[12] P. Cannarsa, P. Martinez, and J. Vancostenoble, {\it The cost of controlling weakly degenerate parabolic equations by boundary controls}, Math. Control Relat. Fields, 7 (2017), pp. 171-211, . · Zbl 1360.35104
[13] P. Cannarsa, P. Martinez, and J. Vancostenoble, {\it The cost of controlling strongly degenerate parabolic equations}, ESAIM Control Optim. Calc. Var., to appear. · Zbl 1360.35104
[14] G. Citti and M. Manfredini, {\it A degenerate parabolic equation arising in image processing}, Commun. Appl. Anal., 8 (2004), pp. 125-141. · Zbl 1099.35050
[15] J. I. Dí az, ed., {\it The Mathematics of Models for Climatology and Environment}, NATO Adv. Sci. Inst. Ser. I: Global Environ. Change 48, Springer, Berlin, 1997, .
[16] S. N. Ethier, {\it A class of degenerate diffusion processes occurring in population genetics}, Comm. Pure Appl. Math., 29 (1976), pp. 483-493, . · Zbl 0333.60075
[17] S. N. Ethier and T. G. Kurtz, {\it Fleming-Viot processes in population genetics}, SIAM J. Control Optim., 31 (1993), pp. 345-386, . · Zbl 0774.60045
[18] H. O. Fattorini and D. L. Russell, {\it Exact controllability theorems for linear parabolic equations in one space dimension}, Arch. Ration. Mech. Anal., 43 (1971), pp. 272-292, . · Zbl 0231.93003
[19] G. Fragnelli and D. Mugnai, {\it Carleman estimates, observability inequalities and null controllability for interior degenerate nonsmooth parabolic equations}, Mem. Amer. Math. Soc. 242, AMS, Providence, RI, 2016, . · Zbl 1377.93043
[20] G. Fragnelli and D. Mugnai, {\it Carleman estimates for singular parabolic equations with interior degeneracy and non-smooth coefficients}, Adv. Nonlinear Anal., 6 (2017), pp. 61-84, . · Zbl 1358.35219
[21] M. Ghil, {\it Climate stability for a Sellers-type model}, J. Atmospher. Sci., 33 (1976), pp. 3-20, .
[22] M. Gueye, {\it Exact boundary controllability of 1-D parabolic and hyperbolic degenerate equations}, SIAM J. Control Optim., 52 (2014), pp. 2037-2054, . · Zbl 1327.35211
[23] E. Kamke, {\it Differentialgleichungen: Lösungsmethoden und Lösungen. Band 1: Gewöhnliche Differentialgleichungen}, Chelsea Publishing, New York, 1948. · Zbl 0194.39301
[24] S. Labbé and E. Trélat, {\it Uniform controllability of semidiscrete approximations of parabolic control systems}, Systems Control Lett., 55 (2006), pp. 597-609, . · Zbl 1129.93324
[25] J. Lagnese, {\it Control of wave processes with distributed controls supported on a subregion}, SIAM J. Control Optim., 21 (1983), pp. 68-85, . · Zbl 0512.93014
[26] N. N. Lebedev, {\it Special Functions and Their Applications}, rev. ed., Dover Publications, New York, 1972. · Zbl 0271.33001
[27] J. L. Lions, {\it Exact controllability, stabilization and perturbations for distributed systems}, SIAM Rev., 30 (1988), pp. 1-68, . · Zbl 0644.49028
[28] P. Lissy, {\it On the cost of fast controls for some families of dispersive or parabolic equations in one space dimension}, SIAM J. Control Optim., 52 (2014), pp. 2651-2676, . · Zbl 1300.93039
[29] A. Lopez and E. Zuazua, {\it Some new results related to the null controllability of the \(1\)-d heat equation}, in Séminaire sur les Équations aux Dérivées Partielles, 1997-1998, École Polytechnique, Palaiseau, France, 1998, Exposé No. VIII, 22. · Zbl 1059.93058
[30] P. Martin, L. Rosier, and P. Rouchon, {\it Null controllability of the heat equation using flatness}, Automatica J. IFAC, 50 (2014), pp. 3067-3076, . · Zbl 1309.93027
[31] P. Martin, L. Rosier, and P. Rouchon, {\it Null controllability of one-dimensional parabolic equations by the flatness approach}, SIAM J. Control Optim., 54 (2016), pp. 198-220, . · Zbl 1348.35121
[32] T. I. Seidman, S. A. Avdonin, and S. A. Ivanov, {\it The “window problem” for series of complex exponentials}, J. Fourier Anal. Appl., 6 (2000), pp. 233-254, . · Zbl 0960.42012
[33] W. D. Sellers, {\it A climate model based on the energy balance of the earth-atmosphere system}, J. Appl. Meteor., 8 (1969), pp. 392-400.
[34] G. Tenenbaum and M. Tucsnak, {\it New blow-up rates for fast controls of Schrödinger and heat equations}, J. Differential Equations, 243 (2007), pp. 70-100, . · Zbl 1127.93016
[35] V. Thomée, {\it Galerkin Finite Element Methods for Parabolic Problems}, 2nd ed., Springer Ser. Comput. Math. 25, Springer, Berlin, 2006. · Zbl 1105.65102
[36] G. N. Watson, {\it A Treatise on the Theory of Bessel Functions}, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1995. · Zbl 0849.33001
[37] X. Zhang and E. Zuazua, {\it Long-time behavior of a coupled heat-wave system arising in fluid-structure interaction}, Arch. Ration. Mech. Anal., 184 (2007), pp. 49-120, . · Zbl 1178.74075
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.