×

Simulation of a fractional Brownian motion in the space \(L_p([0,T])\). (English. Ukrainian original) Zbl 1409.60054

Theory Probab. Math. Stat. 97, 99-111 (2018); translation from Teor. Jmovirn. Mat. Stat. 97, 97-108 (2017).
Summary: A model that approximates the fractional Brownian motion with parameter \( \alpha \in (0,2)\) with a given reliability \( 1- \delta \), \( 0<\delta <1\), and accuracy \( \epsilon > 0\) in the space \( L_p([0,T])\) is constructed. An example of a simulation in the space \( L_2([0,1])\) is given.

MSC:

60G15 Gaussian processes
60G22 Fractional processes, including fractional Brownian motion
60G51 Processes with independent increments; Lévy processes
68U20 Simulation (MSC2010)

Software:

SimEstFBM
Full Text: DOI

References:

[1] biagini2008 F. Biagini, Y. Hu, B. ksendal, and T. Zhang, Stochastic Calculus for Fractional Brownian Motion and Applications, Probability and its Applications, Springer-Verlag, London, 2008. · Zbl 1157.60002
[2] coeujolly2000 J.-F. Coeurjolly, Simulation and identification of the fractional Brownian motion: a bibliographical and comparative study, Journal of Statistical Software 5 (2000), no. 7, 1-53.
[3] dieker2003 A. B. Dieker and M. Mandjes, On spectral simulation of fractional Brownian motion, Probab. Engin. Inform. Sci. 17 (2003), 417-434. · Zbl 1336.60076
[4] dieker2004 A. B. Dieker, Simulation of Fractional Brownian Motion, Master’s thesis, Vrije Universiteit Amsterdam (2002, updated in 2004). · Zbl 1336.60076
[5] Dz K. O. Dzhaparidze and J. H. van Zanten, A series expansion of fractional Brownian motion, CWI, Probability, Networks and Algorithms R 0216 (2002).
[6] ermakov1982 S. M. Ermakov and G. A. Mikhailov, Statistical Simulation, “Nauka”, Moscow, 1982. (Russian) · Zbl 0599.65001
[7] kamenshchikova Yu. Kozachenko and O. Kamenshchikova, Approximation of \(SSub_\varphi (\Omega )\) stochastic processes in the space \(L_p(T)\), Theory Probab. Math. Statist. 79 (2009), 83-88. · Zbl 1224.60067
[8] kolmogorov1940 A. N. Kolmogorov, Wiener spirals and some other interesting curves in a Hilbert space, Dokl. Akad. Nauk SSSR 26 (1940), no. 2, 115-118. (Russian) · Zbl 0022.36001
[9] kolmogorov1941 A. N. Kolmogorov, The local structure of turbulence in an incompressible fluid at very high Reynolds numbers, Dokl. Akad. Nauk SSSR 30 (1941), 299-303. (Russian)
[10] kozolenkopolosm2011 Yu. Kozachenko, A. Olenko, and O. Polosmak, Uniform convergence of wavelet expansions of Gaussian stochastic processes, Stoch. Anal. Appl. 29 (2011), no. 2, 169-184. · Zbl 1215.60026
[11] kozpashko_tvims58 Yu. Kozachenko and A. Pashko, Accuracy of simulation of stochastic processes in norms of Orlicz spaces. I, Theory Probab. Math. Statist. 58 (1999), 51-66. · Zbl 0942.60040
[12] kozpashko_tvims59 Yu. Kozachenko and A. Pashko, Accuracy of simulation of stochastic processes in norms of Orlicz spaces. II, Theory Probab. Math. Statist. 59 (1999), 77-92. · Zbl 0960.60049
[13] kozpashko_tvims61 Yu. Kozachenko and A. Pashko, On the simulation of random fields. I, Theory Probab. Math. Statist. 61 (2000), 61-74. · Zbl 0985.60036
[14] kozpashko_tvims62 Yu. Kozachenko and A. Pashko, On the simulation of random fields. II, Theory Probab. Math. Statist. 62 (2001), 51-63. · Zbl 1004.60032
[15] kozpashko2016 Yu. Kozachenko and A. Pashko, Accuracy and Reliability of Simulation of Random Processes and Fields in Uniform Metrics, Kyiv, 2016. (Ukrainian) · Zbl 1022.60045
[16] kozpashkorozora2007 Yu. Kozachenko, A. Pashko, and I. Rozora, Simulation of Random Processes and Fields, “Zadruga”, Kyiv, 2007. (Ukrainian) · Zbl 1199.60003
[17] kprt2016 Yu. Kozachenko, O. Pogorilyak, I. Rozora, and A. M. Tegza, Simulation of Stochastic Processes with Given Accuracy and Reliability, ISTE Press-Elsevier, 2016. · Zbl 1376.60004
[18] kozrozora2004 Yu. Kozachenko and I. Rozora, Accuracy and reliability of models of stochastic processes of the space \(\textSub_\varphi (\Omega )\), Theory Probab. Math. Statist. 71 (2005), 105-117. · Zbl 1100.60016
[19] kozrozoraturchyn2007 Yu. Kozachenko, I. Rozora, and Ye. Turchyn, On an expansion of stochastic processes in series, Random Oper. Stoch. Equ. 15 (2007), no. 1, 15-33. · Zbl 1142.60349
[20] kv1998 Yu. Kozachenko and O. Vasilik, On the distribution of suprema of \(Sub_\varphi (\Omega )\) stochastic processes, Theory Stoch. Process. 4(20) (1998), no. 1-2, 147-160. · Zbl 0940.60046
[21] KSV Yu. Kozachenko, T. Sottinen, and O. Vasylyk, Simulation of weakly self-similar stationary increment \(Sub_\varphi (\Omega )\)-processes: a series expansion approach, Methodol. Comput. Appl. Probab. 7 (2005), 379-400. · Zbl 1082.60512
[22] kramersabelfeld P. Kramer, O. Kurbanmuradov, and K. Sabelfeld, Comparative analysis of multiscale Gaussian random field simulation algorithms, J. Comput. Phys., September (2007). · Zbl 1124.65009
[23] mandelbrot1968 B. B. Mandelbrot and J. W. van Ness, Fractional Brownian motions, fractional noises and applications, SIAM Review 10 (1968), no. 4, 422-437. · Zbl 0179.47801
[24] mishura2008 Yu. Mishura, Stochastic Calculus for Fractional Brownian Motion and Related Processes, Lecture Notes in Math., vol. 1929, Springer, Berlin, 2008. · Zbl 1138.60006
[25] molz1997 F. J. Molz and H. H. Liu, Fractional Brownian motion and fractional Gaussian noise in subsurface hydrology: A review, presentation of fundamental properties, and extensions, Water Resources Research 33 (1997), no. 10, 2273-2286.
[26] pashko_2014_KNU A. Pashko, Statistical simulation of a generalized Wiener process, Bulletin of Taras Shevchenko National University of Kyiv, Series: Physics & Mathematics 2 (2014), 180-183. (Ukrainian) · Zbl 1313.60089
[27] pashko_2014_UzhNU A. Pashko, Estimation of accuracy of simulation of a generalized Wiener process, Bulletin of Uzhgorod University, Series: Mathematics and Informatics 25 (2014), no. 1, 109-116. (Ukrainian)
[28] pashkoshusharin A. Pashko and Yu. Shusharin, Solving linear stochastic equations with random coefficients using Monte Carlo methods, Scientific Bulletin of Chernivtsi University, Series: Computer Systems and Components 5 (2014), no. 2, 21-27. (Ukrainian)
[29] picard2011 J. Picard, Representation formulae for the fractional Brownian motion, S\'eminaire de Probabilit\'es, Springer-Verlag, XLIII (2011), 3-70. · Zbl 1221.60050
[30] prigarin2005 S. M. Prigarin, Numerical Modeling of Random Processes and Fields, Novosibirsk, 2005. (Russian)
[31] prigarin2009 S. M. Prigarin and P. V. Konstantinov, Spectral numerical models of fractional Brownian motion, Russ. J. Numer. Anal. Math. Modeling 24 (2009), no. 3, 279-295. · Zbl 1166.65305
[32] reed1995 I. S. Reed, P. C. Lee, and T. K. Truong, Spectral representation of fractional Brownian motion in \(n\) dimensions and its properties, IEEE Trans. Inform. Theory 41 (1995), no. 5, 1439-1451. · Zbl 0834.60090
[33] sabelfeld1989 K. Sabelfeld, Monte Carlo Methods in Boundary Problems, “Nauka”, Novosibirsk, 1989. (Russian) · Zbl 0697.65001
[34] shevchenko2015 G. Shevchenko, Fractional Brownian motion in a nutshell, Int. J. Modern Phys. Conf. Ser. 36 (2015), id. 1560002. · Zbl 1337.60067
[35] tommi2003 T. Sottinen, Fractional Brownian Motion in Finance and Queuing, Academic Dissertation, University of Helsinki, 2003.
[36] vaskozyam O. Vasylyk, Yu. Kozachenko, and R. Yamnenko, \( \varphi \)-sub-Gaussian Stochastic Processes, Kyivskyi Universytet, Kyiv, 2008. (Ukrainian) · Zbl 1224.60070
[37] yaglom1955 A. M. Yaglom, Correlation theory of stationary and related stochastic processes with stationary \(n\)-th increments, Mat. Sbornik 37 (1955), no. 1, 141-196.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.