×

A criterion on asymptotic stability for partially equicontinuous Markov operators. (English) Zbl 1409.60105

Summary: In this paper, we prove a slight, but practically useful, generalisation of a criterion on asymptotic stability for Markov e-chains by T. Szarek [Ann. Probab. 34, No. 5, 1849–1863 (2006; Zbl 1108.60064)], which is based on the so-called lower bound technique, developed by A. Lasota and J. A. Yorke [Random Comput. Dyn. 2, No. 1, 41–77 (1994; Zbl 0804.47033)]. Simultaneously, we present an alternative proof of this theorem using an asymptotic coupling method introduced by M. Hairer. Our main result is illustrated by an application to random iterated function systems, which are not contracting on average.

MSC:

60J05 Discrete-time Markov processes on general state spaces
37A30 Ergodic theorems, spectral theory, Markov operators
37A25 Ergodicity, mixing, rates of mixing
Full Text: DOI

References:

[1] Bessaih, H.; Kapica, R.; Szarek, T., Criterion on stability for Markov processes applied to some model with jumps, Semigroup Forum, 88, 76-92, (2014) · Zbl 1297.47044
[2] Billingsley, P., Convergence of Probability Measures, (1999), Wiley New York · Zbl 0172.21201
[3] Czapla, D.; Horbacz, K., Equicontinuity and stability properties of Markov chains arising from iterated function systems on Polish space, Stoch. Anal. Appl., 32, 1-29, (2014) · Zbl 1338.60178
[4] Dudley, R. M., Convergence of Baire measures, Studia Math., 27, 251-268, (1966) · Zbl 0147.31301
[5] Hairer, M.; Mattingly, J., Ergodicity of the 2d Navier-Stokes equations with degenerate stochastic forcing, Ann. of Math., 164, 993-1032, (2006) · Zbl 1130.37038
[6] Hairer, M.; Mattingly, J.; Scheutzo, M., Asymptotic coupling and a general form of harris’ theorem with applications to stochastic delay equations, Probab. Theory Related Fields, 149, 1, 223-259, (2011) · Zbl 1238.60082
[7] R. Kapica, M. Ślęczka, Random iterations with place dependent probabilities, 2017. https://arxiv.org/abs/1107.0707v3; R. Kapica, M. Ślęczka, Random iterations with place dependent probabilities, 2017. https://arxiv.org/abs/1107.0707v3
[8] Komorowski, T.; Peszat, S.; Szarek, T., On ergodicity of some Markov processes, Ann. Probab., 38, 1401-1443, (2010) · Zbl 1214.60035
[9] Kurtz, T. S.; Ethier, S. N., Markov Processes: Characterization and Convergence, (1985), Wiley New York
[10] Lasota, A., From fractals to stochastic differential equations, (Chaos-The Interplay Between Stochastic and Deterministic Behaviour, Lecture Notes in Phys., vol. 457, (1995), Springer Verlag), 235-255 · Zbl 0835.60058
[11] Lasota, A., Dynamical Systems on Measures, (2008), University of Silesia Press Katowice, (in Polish)
[12] Lasota, A.; Szarek, T., Lower bound technique in the theory of a stochastic differential equation, J. Differential Equations, 231, 513-533, (2006) · Zbl 1387.60100
[13] Lasota, A.; Yorke, J., On the existence of invariant measures for piecewise monotonic transformations, Trans. Amer. Math. Soc., 186, 481-488, (1973) · Zbl 0298.28015
[14] Lasota, A.; Yorke, J., Lower bound technique for Markov operators and iterated function systems, Random Comput. Dyn., 2, 41-77, (1994) · Zbl 0804.47033
[15] Meyn, S. P.; Tweedie, R. L., Markov Chains and Stochastic Stability, (1993), Springer-Verlag London · Zbl 0925.60001
[16] Odasso, C., Exponential mixing for stochastic PDEs: the non-additive case, Probab. Theory Related Fields, 140, 41-82, (2008) · Zbl 1137.60030
[17] Revuz, D., Markov Chains, (1975), North-Holland Elsevier Amsterdam · Zbl 0332.60045
[18] Szarek, T., The stability of Markov operators on Polish spaces, Studia Math., 143, 145-152, (2000) · Zbl 0964.60071
[19] Szarek, T., Invariant measures for Markov operators with applications to function systems, Studia Math., 154, 3, 207-222, (2003) · Zbl 1036.47003
[20] Szarek, T., Feller processes on non-locally compact spaces, Ann. Probab., 34, 1849-1863, (2006) · Zbl 1108.60064
[21] Szarek, T.; Worm, D. T., Ergodic measures of Markov semigroups with the e-property, Ergodic Theory Dynam. Systems, 32, 3, 1117-1135, (2012) · Zbl 1261.37007
[22] Werner, I., Contractive Markov systems, J. Lond. Math. Soc., 71, 2, 236-258, (2005) · Zbl 1071.60064
[23] Williamson, R.; Janos, L., Constructing metrics with the heine-Borel property, Proc. Amer. Math. Soc., 100, 567-573, (1987) · Zbl 0626.54035
[24] Wojewódka, H., Exponential rate of convergence for some Markov operator, Statist. Probab. Lett., 83, 10, 2337-2347, (2013) · Zbl 1291.60156
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.