×

Mixed \(\ell_2\) and \(\ell_1\)-norm regularization for adaptive detrending with ARMA modeling. (English) Zbl 1393.93084

Summary: In this paper, the problem of detrending a time series and/or estimating a wandering baseline is addressed. We propose a new methodology that adaptively minimizes different regularized cost functions by introducing an ARMA model of the underlying trend. Mixed \(\ell_1/\ell_2\)-norm penalty functions are taken into consideration and novel RLS and LMS solutions are derived for the model parameters estimation. The proposed methods are applied to typical trend estimation/removal problems that can be found in the analysis of economic time series or biomedical signal acquisition. Comparisons with standard noncausal filtering techniques are also presented.

MSC:

93C70 Time-scale analysis and singular perturbations in control/observation systems
37M10 Time series analysis of dynamical systems
93E20 Optimal stochastic control
90C15 Stochastic programming
93C40 Adaptive control/observation systems
Full Text: DOI

References:

[1] Hodrick, R.; Prescott, E. C., Postwar U.S. business cycles: an empirical investigation, J. Money Credit Bank., 29, 1, 1-16, (1997)
[2] Singleton, K. J., Econometric issues in the analysis of equilibrium business cycle models, J. Monet. Econ., 21, 23, 361-386, (1988)
[3] Tsay, R., Analysis of Financial Time Series, (2005), Wiley-Interscience Hoboken, NJ · Zbl 1086.91054
[4] Greenland, S.; Longnecker, M., Methods for trend estimation from summarized dose-response data, with applications to meta-analysis, Am. J. Epidemiol., 135, 11, 1301-1309, (1992)
[5] Jeng, Y.-N.; Yang, T.-M.; Cheng, Y.-C., A class of fast and accurate deterministic trend decomposition in the spectral domain using simple and sharp diffusive filters, J. Frankl. Inst., 349, 6, 2065-2092, (2012) · Zbl 06372187
[6] Wang, B.; Sun, J.; Motter, A. E., Detecting structural breaks in seasonal time series by regularized optimization, (Deodatis, G.; Ellingwood, B. R.; Frangopol, D. M., Safety, Reliability, Risk and Life-Cycle Performance of Structures & Infrastructures, (2013), Taylor & Francis Group London), 3621-3628
[7] Tibshirani, R., Regression shrinkage and selection via the lasso, J. R. Stat. Soc., 58, 1, 267-288, (1996) · Zbl 0850.62538
[8] Chen, S.; Donoho, D.; Saunders, M., Atomic decomposition by basis pursuit, SIAM J. Sci. Comput., 20, 1, 33-61, (1998) · Zbl 0919.94002
[9] Boyd, S.; Vandenberghe, L., Convex Optimization, (2004), Cambridge Univ. Press · Zbl 1058.90049
[10] Kim, S.-J.; Koh, K.; Boyd, S.; Gorinevsky, D., ℓ_{1} trend filtering, SIAM Rev., 51, 339-360, (2009) · Zbl 1171.37033
[11] Clifford, G., ECG statistics, noise, artifacts, and missing data, (Clifford, G.; Azuaje, F.; McSharry, P., Advanced Methods for ECG Analysis, (2006), Artech House London), 55-99
[12] Fasano, A.; Villani, V.; Vollero, L., Baseline wander estimation and removal by quadratic variation reduction, Proceedings of the International Conference on Engineering in Medicine and Biology Society, EMBC, 977-980, (2011)
[13] Argenti, F.; Facheris, L.; Giarré, L., Adaptive quadratic regularization for baseline wandering removal in wearable ECG devices, Proceedings of the Twenty-Fourth European Signal Processing Conference (EUSIPCO), 1718-1722, (2016)
[14] Argenti, F.; Bamieh, B.; Giarré, L., Regularized LMS methods for baseline wandering removal in wearable ECG devices, Proceedings of the IEEE Fifty-Fifth Conference on Decision and Control (CDC), 5029-5034, (2016)
[15] Candes, E. J.; Wakin, M. B., An introduction to compressive sampling, IEEE Signal Process. Mag., 25, 2, 21-30, (2008)
[16] Chiuso, A.; Pillonetto, G., A Bayesian approach to sparse dynamic network identification, Automatica, 48, 8, 1553-1565, (2012) · Zbl 1267.93172
[17] Materassi, D.; Innocenti, G.; Giarré, L.; Salapaka, M., Model identification of a network as compressing sensing, Syst. Control Lett., 62, 8, 664-672, (2013) · Zbl 1279.93019
[18] Liu, Y.; Li, C.; Zhang, Z., Diffusion sparse least-mean squares over networks, IEEE Trans. Signal Process., 60, 8, 4480-4485, (2012) · Zbl 1393.94692
[19] Liu, L.; Zhang, Y.; Sun, D., VFF l_{1}-norm penalised WL-RLS algorithm using DCD iterations for underwater acoustic communication, IET Commun., 11, 5, 615-621, (2017)
[20] de Andrade, J. F.; de Campos, M. L.R.; Apolinrio, J. A., L_{1}-constrained normalized LMS algorithms for adaptive beamforming, IEEE Trans. Signal Process., 63, 24, 6524-6539, (2015) · Zbl 1395.94191
[21] Solo, V.; Kong, X., Adaptive Signal Processing Algorithms: Stability and Performance, (1994), Prentice Hall
[22] Chen, Y.; Gu, Y.; Hero, A. O., Sparse LMS for system identification, Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, 3125-3128, (2009)
[23] Eksioglu, E.; Tanc, A., RLS algorithm with convex regularization, IEEE Signal Process. Lett., 18, 8, 470-473, (2011)
[24] Angelosante, D.; Giannakis, G., RLS-weighted lasso for adaptive estimation of sparse signals, Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP, 3245-3248, (2009)
[25] Garrigues, P.; Ghaoui, L. E., An homotopy algorithm for the lasso with online observations, (Koller, D.; Schuurmans, D.; Bengio, Y.; Bottou, L., Advances in Neural Information Processing Systems 21, (2009), Curran Associates, Inc.), 489-496
[26] Bertsekas, D.; Nedic, A.; Ozdaglar, A., Convex Analysis and Optimization, (2003), Cambridge, MA: Athena Scientific · Zbl 1140.90001
[27] Manolakis, D.; Ingle, V.; Kogon, S., Statistical and Adaptive Signal Processing: Spectral Estimation, Signal Modeling, Adaptive Filtering and Array Processing, (2005), Artech House
[28] Tay, F.; Guo, D.; Xu, L.; Nyan, M.; Yap, K., Memswear-biomonitoring system for remote vital signs monitoring, J. Frankl. Inst., 346, 6, 531-542, (2009) · Zbl 1172.92363
[29] Laguna, P.; Jané, R.; Caminal, P., Adaptive filtering of ECG baseline wander, Proceedings of the Fourteenth Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2, 508-509, (1992)
[30] Park, K. L.; Lee, K. J.; Yoon, H. R., Application of a wavelet adaptive filter to minimise distortion of the ST-segment, Med. Biol. Eng. Comput., 36, 5, 581-586, (1998)
[31] Blanco-Velasco, M.; Weng, B.; Barner, K. E., ECG signal denoising and baseline wander correction based on the empirical mode decomposition, Comput. Bio. Med., 38, 1, 1-13, (2008)
[32] Fasano, A.; Villani, V.; Vollero, L., Fast ECG baseline wander removal preserving the ST segment, Proceedings of the Fourth International Symposium on Applied Sciences in Biomedical and Communication Technologies, ISABEL ’11, 56:1-56:5, (2011), ACM New York, NY, USA
[33] McElroy, T., Exact formulas for the hodrick-prescott filter, Econom. J., 11, 209-217, (2008) · Zbl 1135.91412
[34] Fasano, A.; Villani, V., Baseline wander removal in ECG and AHA recommendations, Proceedings of the Computing in Cardiology Conference, 1171-1174, (2013)
[35] McSharry, P.; Clifford, G.; Tarassenko, L.; Smith, L., A dynamical model for generating synthetic electrocardiogram signals, IEEE Trans. Biomed. Eng., 50, 3, 289-294, (2003)
[36] Goldberger, A. L.; Amaral, L. A.N.; Glass, L.; Hausdorff, J. M.; Ivanov, P. C.; Mark, R. G.; Mietus, J. E.; Moody, G. B.; Peng, C.-K.; Stanley, H. E., Physiobank, physiotoolkit, and physionet: components of a new research resource for complex physiologic signals, Circulation, 101, 23, e215-e220, (2000)
[37] http://us.spindices.com/indices/equity/sp-500; http://us.spindices.com/indices/equity/sp-500
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.