×

Efficient derivative-free numerical methods for solving systems of nonlinear equations. (English) Zbl 1342.65131

One-parameter families of fourth- and sixth-order methods for solving systems of nonlinear equations are developed. These iterative schemes are derivative-free. The local convergence order of the new methods is proven. Results of numerical experiments are given.

MSC:

65H10 Numerical computation of solutions to systems of equations
65Y20 Complexity and performance of numerical algorithms

Software:

Mathematica; MPFR
Full Text: DOI

References:

[1] Cordero A, Torregrosa JR (2006) Variants of Newton’s method for functions of several variables. Appl Math Comput 183:199-208 · Zbl 1123.65042 · doi:10.1016/j.amc.2006.05.062
[2] Cordero A, Torregrosa JR (2007) Variants of Newton’s method using fifth-order quadrature formulas. Appl Math Comput 190:686-698 · Zbl 1122.65350 · doi:10.1016/j.amc.2007.01.062
[3] Cordero A, Martínez E, Torregrosa JR (2009) Iterative methods of order four and five for systems of nonlinear equations. J Comput Appl Math 231:541-551 · Zbl 1173.65034 · doi:10.1016/j.cam.2009.04.015
[4] Cordero A, Hueso JL, Martínez E, Torregrosa JR (2010) A modified Newton-Jarratt’s composition. Numer Algorithms 55:87-99 · Zbl 1251.65074 · doi:10.1007/s11075-009-9359-z
[5] Cordero A, Hueso JL, Martínez E, Torregrosa JR (2012) Increasing the convergence order of an iterative method for nonlinear systems. Appl Math Lett 25:2369-2374 · Zbl 1252.65093 · doi:10.1016/j.aml.2012.07.005
[6] Darvishi MT, Barati A (2007) A third-order Newton-type method to solve systems of nonlinear equations. Appl Math Comput 187:630-635 · Zbl 1116.65060 · doi:10.1016/j.amc.2006.08.080
[7] Darvishi MT, Barati A (2007) A fourth-order method from quadrature formulae to solve systems of nonlinear equations. Appl Math Comput 188:257-261 · Zbl 1118.65045 · doi:10.1016/j.amc.2006.09.115
[8] Frontini M, Sormani E (2004) Third-order methods from quadrature formulae for solving systems of nonlinear equations. Appl Math Comput 149:771-782 · Zbl 1050.65055 · doi:10.1016/S0096-3003(03)00178-4
[9] Fousse L, Hanrot G, Lefèvre V, Pélissier P, Zimmermann P (2007) MPFR: a multiple-precision binary floating-point library with correct rounding. ACM Trans Math Softw 33(2) 15. Art. 13 · Zbl 1365.65302
[10] Grau-Sánchez M, Grau À, Noguera M (2011) On the computational efficiency index and some iterative methods for solving systems of nonlinear equations. J Comput Appl Math 236:1259-1266 · Zbl 1231.65090 · doi:10.1016/j.cam.2011.08.008
[11] Grau-Sánchez M, Grau À, Noguera M (2011) Ostrowski type methods for solving systems of nonlinear equations. Appl Math Comput 218:2377-2385 · Zbl 1243.65056 · doi:10.1016/j.amc.2011.08.011
[12] Grau-Sánchez M, Noguera M (2012) A technique to choose the most efficient method between secant method and some variants. Appl Math Comput 218:6415-6426 · Zbl 1277.65032 · doi:10.1016/j.amc.2011.12.011
[13] Grau-Sánchez M, Noguera M, Amat S (2013) On the approximation of derivatives using divided difference operators preserving the local convergence order of iterative methods. J Comput Appl Math 237:363-372 · Zbl 1308.65074 · doi:10.1016/j.cam.2012.06.005
[14] Homeier HHH (2004) A modified Newton method with cubic convergence: the multivariate case. J Comput Appl Math 169:161-169 · Zbl 1059.65044 · doi:10.1016/j.cam.2003.12.041
[15] Jay LO (2001) A note on Q-order of convergence. BIT 41:422-429 · Zbl 0973.40001 · doi:10.1023/A:1021902825707
[16] Liu Z, Zheng Q, Zhao P (2010) A variant of Steffensen’s method of fourth-order convergence and its applications. Appl Math Comput 216:1978-1983 · Zbl 1208.65064 · doi:10.1016/j.amc.2010.03.028
[17] Noor MA, Waseem M (2009) Some iterative methods for solving a system of nonlinear equations. Comput Math Appl 57:101-106 · Zbl 1165.65349 · doi:10.1016/j.camwa.2008.10.067
[18] Ortega JM, Rheinboldt WC (1970) Iterative solution of nonlinear equations in several variables. Academic Press, New York · Zbl 0241.65046
[19] Ostrowski AM (1960) Solution of equations and system of equations. Academic Press, New York · Zbl 0115.11201
[20] Petković MS (1989) Iterative methods for simultaneous inclusion of polynomial zeros. Springer, Berlin · Zbl 0689.65028
[21] Petković MS, Neta B, Petković LD, Džunić J (2013) Multipoint methods for solving nonlinear equations. Elsevier, Boston · Zbl 1286.65060
[22] Potra F-A, Pták V (1984) Nondiscrete induction and iterarive processes. Pitman Publishing, Boston · Zbl 0549.41001
[23] Ren H, Wu Q, Bi W (2009) A class of two-step Steffensen type methods with fourth-order convergence. Appl Math Comput 209:206-210 · Zbl 1166.65338 · doi:10.1016/j.amc.2008.12.039
[24] Sharma JR, Arora H (2014) Efficient Jarratt-like methods for solving systems of nonlinear equations. Calcolo 51:193-210. doi:10.1007/s10092-013-0097-1 · Zbl 1311.65052
[25] Sharma JR, Guha RK, Sharma R (2013) An efficient fourth order weighted-Newton method for systems of nonlinear equations. Numer Algorithms 62:307-323 · Zbl 1283.65051 · doi:10.1007/s11075-012-9585-7
[26] Steffensen JF (1933) Remarks on iteration. Skand Aktuar Tidskr 16:64-72 · Zbl 0007.02601
[27] Traub JF (1964) Iterative methods for the solution of equations. Prentice-Hall, New Jersey · Zbl 0121.11204
[28] Wang X, Zhang T (2013) A family of Steffensen type methods with seventh-order convergence. Numer Algorithms 62:229-444 · Zbl 1276.65028
[29] Wolfram S (2003) The mathematica book, 5th edn. Wolfram Media, Champaign · Zbl 0924.65002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.