×

High energy physics in the vicinity of rotating black holes. (English. Russian original) Zbl 1334.83047

Theor. Math. Phys. 185, No. 1, 1425-1432 (2015); translation from Teor. Mat. Fiz. 185, No. 1, 77-85 (2015).
Summary: We consider particle collisions in the vicinity of the horizon of rotating black holes. We show that the existence of geodesics for both massive and massless particles coming from inside the gravitational radius leads to different possibilities for an unboundedly high collision energy to appear in the center-of-mass frame of two particles. We give a classification of such geodesics in the general case based on a proved theorem for extremal spherical orbits. We analyze the case of the unbounded energy increase in the situation where one (critical) particle moves along the “white hole” geodesic with an angular momentum close to the bound while the other particle falls along an ordinary geodesic and the case of an unbounded negative angular momentum of the first particle.

MSC:

83C57 Black holes
83C10 Equations of motion in general relativity and gravitational theory

References:

[1] Bañados, M.; Silk, J.; West, S. M., No article title, Phys. Rev. Lett., 103, 111102 (2009) · doi:10.1103/PhysRevLett.103.111102
[2] Grib, A. A.; Pavlov, Yu. V., No article title, JETP Letters, 92, 125-129 (2010) · doi:10.1134/S0021364010150014
[3] Grib, A. A.; Pavlov, Yu. V., No article title, Astropart. Phys., 34, 581-586 (2011) · doi:10.1016/j.astropartphys.2010.12.005
[4] Grib, A. A.; Pavlov, Yu. V., No article title, Grav. Cosmol., 17, 42-46 (2011) · Zbl 1232.83020 · doi:10.1134/S0202289311010099
[5] Thorne, K. S., No article title, Astrophys. J., 191, 507-519 (1974) · doi:10.1086/152991
[6] Grib, A. A.; Pavlov, Yu. V., No article title, Theor. Math. Phys., 176, 881-887 (2013) · Zbl 1286.83059 · doi:10.1007/s11232-013-0075-4
[7] Grib, A. A.; Pavlov, Yu. V., No article title, Europhys. Lett., 101, 20004 (2013) · doi:10.1209/0295-5075/101/20004
[8] Grib, A. A.; Pavlov, Yu. V., No article title, Grav. Cosmol., 21, 13-18 (2015) · Zbl 1321.83030 · doi:10.1134/S0202289315010065
[9] L. D. Landau and E. M. Lifshitz, Theory of Fields [in Russian], Nauka, Moscow (1988); English transl. prev. ed.: The Classical Theory of Fields, Pergamon, Oxford (1983). · Zbl 0178.28704
[10] Grib, A. A.; Pavlov, Yu. V.; Vertogradov, V. D., No article title, Modern Phys. Lett. A, 29, 1450110 (2014) · Zbl 1295.83040 · doi:10.1142/S0217732314501107
[11] Penrose, R., No article title, Rivista Nuovo Cimento, 1, 252-276 (1969)
[12] Kerr, R. P., No article title, Phys. Rev. Lett., 11, 237-238 (1963) · Zbl 0112.21904 · doi:10.1103/PhysRevLett.11.237
[13] Boyer, R. H.; Lindquist, R. W., No article title, J. Math. Phys., 8, 265-281 (1967) · Zbl 0149.23503 · doi:10.1063/1.1705193
[14] S. Chandrasekhar, The Mathematical Theory of Black Holes, Clarendon, New York (1983). · Zbl 0511.53076
[15] I. D. Novikov and V. P. Frolov, Physics of Black Holes [in Russian], Nauka, Moscow (1986); English transl.: V. P. Frolov and I. D. Novikov Black Hole Physics: Basic Concepts and New Developments, Kluwer Academic, Dordrecht (1998).
[16] Dymnikova, I. G., No article title, Sov. Phys. Usp., 29, 215-237 (1986) · doi:10.1070/PU1986v029n03ABEH003178
[17] Bardeen, J. M.; Press, W. H.; Teukolsky, S. A., No article title, Astrophys. J., 178, 347-369 (1972) · doi:10.1086/151796
[18] Harada, T.; Kimura, M., No article title, Phys. Rev. D, 83, 084041 (2011) · doi:10.1103/PhysRevD.83.084041
[19] Grib, A. A.; Pavlov, Yu. V.; Piattella, O. F., No article title, Grav. Cosmol., 18, 70-75 (2012) · Zbl 1252.83059 · doi:10.1134/S0202289312010094
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.