×

Bending of thin periodic plates. (English) Zbl 1343.35225

The authors of this interesting paper investigate the process of deformation under bending of nonlinearly elastic plates of very small thickness tending to zero. The material of the plate has thickness \(h\to 0\) and possesses an \(\varepsilon \)-periodic structure such that \(\varepsilon^{-2}h\to 0\). It turns out that the plates exhibit non-standard behaviour in the asymptotic two-dimensional reduction from three-dimensional elasticity. There is an observation that in general, their effective stored-energy density is “discontinuously anisotropic” in all directions.
The first ideas and methods to study these objects belong to E. Acerbi et al. [J. Elasticity 25, No. 2, 137–148 (1991; Zbl 0734.73094)], H. Le Dret and A. Raoult [J. Math. Pures Appl. (9) 74, No. 6, 549–578 (1995; Zbl 0847.73025)] and were continued by O. Pantz [“Quelques problèmes de modélisation en élasticité non linéaire”, Thèse de l’Université Pierre et Marie Curie (2001)], G. Friesecke et al. [Commun. Pure Appl. Math. 55, No. 11, 1461–1506 (2002; Zbl 1021.74024); Arch. Ration. Mech. Anal. 180, No. 2, 183–236 (2006; Zbl 1100.74039)]. The observation here is that the homogeneous plates of thickness \(h\), represented as three-dimensional nonlinearly elastic bodies, afford a special compactness argument for sequences of deformation gradients \(\nabla u\) with elastic energy of order \(O(h^3 )\) as \(h\to 0\). It is introduced a new “rigidity estimate” concerning the distance of local values of \(\nabla u\) from the group of rotations SO(3). Consider the “limit” elastic energy functional as \(h\to 0\), \[ E_{\mathrm{lim}}(u)=12^{-1}\int_{\omega } Q_2(\Pi (u)), \;\;u\in H_{\mathrm{iso}}^{2}(\omega), \] where \(\omega\subset\mathbb{R}^2\) is the mid-surface of the undeformed plate, \(\Pi (u)=(\nabla'u)^T\nabla' (\partial_1u\bigwedge\partial_2u)\) (\(\nabla'=(\partial_1,\partial_2)\)) is the matrix of the second fundamental form of an isometric surface \(u:\omega\to \mathbb{R}^{3}\), and \(Q_2\) is a quadratic form derived via dimension reduction from a quadratic form appearing in the process of linearisation of elastic properties of the material in the small-strain regime. Considering real-world materials the authors pose the question: “in what way the above result is affected by a possible inhomogeneity of material properties of the plate in the directions tangential to its mid-surface.”
The main result here concerns the supercritical regime, that is, \(h\ll \varepsilon^2\). The limit energy functional has the form \[ E_{\mathrm{hom}}^{sc}=(12)^{-1}\int_{\omega} Q_{\mathrm{hom}}^{sc}(\Pi (u)), \] where \(Q_{\mathrm{hom}}^{sc}=\min\int_{Y} Q_2(y,\Pi + \nabla_{y}^2\psi )dy\), \(\psi \in H_{\mathrm{loc}}^{2}(\mathbb{R}^2)\) is \(Y\)-periodic, subject to the isometry constraint equality \(\det{(\Pi + \nabla_{y}^2\psi )}=0\). Here \(\psi = \psi (x',y)\), \(x'\in\omega \), \(y\in Y\equiv [0,1)^2\) is a term from the two-scale limit of the original sequence of deformations. Note that the behavior of the plate on \(\varepsilon \)-scale depends on this term. The above stated isometry constraint implies that \(Q^{sc}(\Pi )\) is “discontinuously anisotropic in all directions of bending as a function of the macroscopic deformation gradient \(\nabla u\)”. The authors claim that probably one may encounters here with a new phenomenon for nonlinearly elastic plates. Finally, they conclude that the analysis of the “critical” scaling \(h \sim \varepsilon^2\) is currently open.

MSC:

35Q74 PDEs in connection with mechanics of deformable solids
74B20 Nonlinear elasticity
74Q05 Homogenization in equilibrium problems of solid mechanics
41A60 Asymptotic approximations, asymptotic expansions (steepest descent, etc.)
49S99 Variational principles of physics

References:

[1] Acerbi, E., Buttazzo, G., Percivale, D.: A variational definition of the strain energy for an elastic string. J. Elast. 25(2), 137-148 (1991) · Zbl 0734.73094 · doi:10.1007/BF00042462
[2] Cherdantsev, M., Cherednichenko, K.D.: Two-scale \[\Gamma\] Γ-convergence of integral functionals and its application to homogenisation of nonlinear high-contrast periodic composites. Arch. Ration. Mech. Anal. 204, 445-478 (2012) · Zbl 1458.74119 · doi:10.1007/s00205-011-0481-4
[3] Cherdantsev, M., Cherednichenko, K.D., Neukamm, S.: Homogenisation in finite elasticity for composites with a high contrast in the vicinity of rigid-body motions. Preprint (2013) arXiv:1303.1224 · Zbl 1374.74016
[4] Ciarlet, P.G.: Mathematical Elasticity: Three-Dimensional Elasticity, vol. I. Elsevier, North-Holland (1988) · Zbl 0648.73014
[5] Cioranescu, D., Damlamian, A., Griso, G.: The periodic unfolding method in homogenization. SIAM J. Math. Anal. 40(4), 1585-1620 (2008) · Zbl 1167.49013 · doi:10.1137/080713148
[6] De Giorgi, E., Franzoni, T.: Su un tipo di convergenza variazionale. Atti Accad. Naz. Lincei Rend. Cl. Sci. Mat. Natur. 58, 842-850 (1975) · Zbl 0339.49005
[7] Dacorogna, B.: Direct Methods in Calculus of Variations. Springer-Verlag, Berlin (2000) · Zbl 1140.49001
[8] Friesecke, G., James, R.D., Müller, S.: A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional Elasticity. Commun. Pure Appl. Math. 55(11), 1461-1506 (2002) · Zbl 1021.74024 · doi:10.1002/cpa.10048
[9] Friesecke, G., James, R.D., Müller, S.: A hierarchy of plate models derived from nonlinear elasticity by Gamma-convergence. Arch. Ration. Mech. Anal. 180(2), 183-236 (2006) · Zbl 1100.74039 · doi:10.1007/s00205-005-0400-7
[10] Griso, G.: Error estimate and unfolding for periodic homogenization. Asymptot. Anal. 40(3-4), 269-286 (2004) · Zbl 1071.35015
[11] Hardy, G.H., Littlewood, J.E., Polya, G.: Inequalities, 2nd edn. Cambridge Mathematical Library, Cambridge University Press (1952) · Zbl 1100.74039
[12] Hornung, P.: Approximating \[W^{2,2}\] W2,2 isometric immersions. Comptes Rendus Mathematique 346(3), 189-192 (2008) · Zbl 1149.46030 · doi:10.1016/j.crma.2008.01.001
[13] Hornung, P.: Approximation of flat \[W^{2,2}\] W2,2 isometric immersions by smooth ones. Arch. Ration. Mech. Anal. 199(3), 1015-1067 (2011) · Zbl 1242.46040 · doi:10.1007/s00205-010-0374-y
[14] Hornung, P., Neukamm, S., Velcic, I.: Derivation of a homogenized nonlinear plate theory from 3d elasticity. Calc. Var. Partial Differ. Equ. 51(3-4), 677-699 (2014) · Zbl 1327.35018 · doi:10.1007/s00526-013-0691-8
[15] Le Dret, H., Raoult, A.: The nonlinear membrane model as variational limit of nonlinear three-dimensional elasticity. J. Math. Pures Appl. (9) 74(6), 549-578 (1995) · Zbl 0847.73025
[16] Müller, S., Pakzad, M.R.: Regularity properties of isometric immersions. Mathematische Zeitschrift 251(2), 313-331 (2005) · Zbl 1082.58010 · doi:10.1007/s00209-005-0804-y
[17] Neukamm, S.: Homogenization, linearization and dimension reduction in elasticity with variational methods. Ph.D. Thesis, Munich (2010) · Zbl 0734.73094
[18] Neukamm, S., Olbermann, H.: Homogenization of the nonlinear bending theory for plates. Calc. Var. Partial Differ. Equ. 53(3-4), 719-753 (2015) · Zbl 1356.35034 · doi:10.1007/s00526-014-0765-2
[19] Nguetseng, G.: A general convergence result for a functional related to the theory of homogenization. SIAM J. Math. Anal. 20, 608-629 (1989) · Zbl 0688.35007 · doi:10.1137/0520043
[20] Pakzad, M.R.: On the Sobolev space of isometric immersions. J. Differ. Geom. 66(1), 47-69 (2004) · Zbl 1064.58009
[21] Pantz, O.: Quelques problèmes de modélisation en élasticité non linéaire (Some modeling problems in nonlinear elasticity). These de l’Universite Pierre et Marie Curie (2001)
[22] Spivak, M.: A Comprehensive Introduction to Differential Geometry, vol. III. Publish or Perish Inc, Wilmington (1979) · Zbl 0439.53002
[23] Velcic, I.: A note on the derivation of homogenized bending plate model. Preprint (2013) arXiv:1212.2594 · Zbl 1329.35050
[24] Jikov, V.V., Kozlov, S.M., Oleinik, O.A.: Homogenisation of Differential Operators and Integral Functionals. Springer-Verlag, Berlin (1994) · Zbl 0734.73094
[25] Zhikov, V.V., Pastukhova, S.E.: On operator estimates for some problems in homogenisation theory. Russ. J. Math. Phys. 12(4), 515-524 (2005) · Zbl 1387.35037
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.