×

4-cycle systems of \(K_n-E(F^\ast)\). (English) Zbl 1322.05080

Summary: In this paper necessary and sufficient conditions are found for the existence of a \(4\)-cycle system of a complete graph on \(n\) vertices with leave a nearly 2-regular graph (that is, a not necessarily spanning graph in which all vertices have degree 2 except for one of degree greater than 2).

MSC:

05C38 Paths and cycles
Full Text: DOI

References:

[1] Alspach, B., Gavlas, H.: Cycle decomposition of \[K_n\] Kn and \[K_{n-1}\] Kn-1. J. Combin. Theory (B) 81, 77-99 (2001) · Zbl 1023.05112 · doi:10.1006/jctb.2000.1996
[2] Ashe, D.J., Rodger, C.A., Fu, H.L.: All 2-regular leaves of partial 6-cycle systems. Ars Combin. 76, 129-150 (2005) · Zbl 1164.05429
[3] Bryant, D.: Hamilton cycle rich two-factorizations of complete graphs. J. Combin. Designs 12(2), 147-155 (2004) · Zbl 1043.05095 · doi:10.1002/jcd.20005
[4] Buchanan II, H.: Graph factors and hamiltonian decompositions, Ph.D. Dissertation, West Virginia University (1997) · Zbl 1010.05041
[5] Burling, J., Heinrich, K.: Near 2-factorizations of \[2(K_n)2\](Kn): cycles of even length. Graphs Combin. 5, 213-221 (1989) · Zbl 0729.05039 · doi:10.1007/BF01788673
[6] Cavenagh, N.J., Billington, E.J.: Decompositions of complete multipartite graphs into cycles of even length. Graphs Combin. 16, 49-65 (2000) · Zbl 0944.05083 · doi:10.1007/s003730050003
[7] Colbourn, C.J., Rosa, A.: Quadratic leaves of maximal partial triple systems. Graphs Combin. 2, 317-337 (1986) · Zbl 0609.05009 · doi:10.1007/BF01788106
[8] Colby, M., Rodger, C.A.: Cycle decompositions of the line graph of \[K_n\] Kn. J. Combin. Theory (A) 62, 158-161 (1993) · Zbl 0777.05076 · doi:10.1016/0097-3165(93)90078-M
[9] Cox, B.A., Rodger, C.A.: Cycle systems of the line graph of the complete graph. J. Graph Theory 21, 173-182 (1996) · Zbl 0840.05068 · doi:10.1002/(SICI)1097-0118(199602)21:2<173::AID-JGT6>3.0.CO;2-O
[10] Fu, C.M., Fu, H.L., Smith, T., Rodger, C.A.: All graphs with maximum degree 3 whose complements have a 4-cycle decomposition. Discrete Math. 308, 2901-2909 (2008) · Zbl 1171.05011 · doi:10.1016/j.disc.2007.07.082
[11] Fu, H.L., Rodger, C.A.: Four-cycle systems with two-regular leaves. Graphs Combin. 17, 457-461 (2001) · Zbl 1010.05041 · doi:10.1007/PL00013411
[12] Hoffman, D.G., Lindner, C.C., Rodger, C.A.: On the construction of odd cycle systems. J. Graph Theory 13, 417-426 (1989) · Zbl 0704.05031 · doi:10.1002/jgt.3190130405
[13] McCauley, L., Rodger, C.A.: Hamilton cycle rich 2-factorizations of complete multipartite graphs. Graphs Combin. 24, 47-52 (2008) · Zbl 1158.05053 · doi:10.1007/s00373-008-0763-2
[14] Rees, D.H.: Some designs of use in serology. Biometrics 23, 779-791 (1967) · doi:10.2307/2528428
[15] Rodger, C.A., Sehgal, N.: 4-cycle systems of line graphs of complete multipartite graphs. East West J. Math. Special Volume, 129-136 (2008) · Zbl 1285.05104
[16] Sajna, M.G.: Cycle decompositions III: complete graphs and fixed length cycles. J. Combin. Designs 10, 27-78 (2002) · Zbl 1033.05078 · doi:10.1002/jcd.1027
[17] Smith, B.R., Cavenagh, N.J.: Decomposing complete equipartite graphs into short even cycles. J. Combin. Des. 19, 131-143 (2011) · Zbl 1216.05118 · doi:10.1002/jcd.20265
[18] Sotteau, D.: Decomposition of \[K_{m, n} (K^*_{m, n})\] Km,n(Km,n∗) into cycles (circuits) of length \[2k2\] k. J. Combin. Theory (B) 30, 75-81 (1981) · Zbl 0463.05048 · doi:10.1016/0095-8956(81)90093-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.