×

Schur asymptotics of Veronese syzygies. (English) Zbl 1320.14068

In the present note the authors study the asymptotic behaviour of Veronese syzygies as representations of the general linear group. In order to formulate the main result let us now recall some notions.
Let \(\mathbb{P} = \mathbb{P}(V)\) be the projective plane. Recall that the \(d\)-th Veronese embedding of \(\mathbb{P}\) is \[ \mathbb{P} \hookrightarrow X_{d} \subseteq \mathbb{P}(\mathrm{Sym}^{d}(V)) \] defined by all monomials of degree \(d\). Denote by \[ S = \bigoplus_{i=0}^{\infty} \mathrm{Sym}^{i}\mathrm{Sym}^{d}(V), \,\,\,\, R = \bigoplus_{i=0}^{\infty}\mathrm{Sym}^{\mathrm{id}}(V) \] the coordinate ring of the Veronese ambient space and the homogeneous coordinate ring of the Veronese image, respectively. Consider the free graded \(S\)-resolution \[ 0 \leftarrow R \leftarrow F_{0} \leftarrow\dots \leftarrow F_{r} \leftarrow 0, \] where \[ F_{p} = \bigoplus_{j} S(-a_{p,j}) \] are free graded modules over \(S\). In order to keep track of the gradings one considers the finite dimensional vector spaces \(K_{p,q}(d)\) (i.e. the so-called Koszul cohomologies) and writes \[ F_{p} = K_{p,q}(d) \otimes S(-p-q). \] M. L. Green in [J. Differ. Geom. 20, 279–289 (1984; Zbl 0559.14009)] initiated geometrical studies of syzygies and he showed that for the \(d\)-th Veronese embedding one has \[ K_{p,q}(d) = 0 \,\,\, \text{if} \,\,\, q \geq 2 \,\,\, \text{and} \,\,\, d \geq p. \] In the case of Veronese embeddings the syzygies \(K_{p,q}(d)\) are representations of the general linear group \(\mathrm{GL}(V)\) and one may ask how the syzygies decompose into irreducible representations. It is difficult to expect that it is possible to determine the exact decomposition, thus looking at the asymptotic picture seems to be more accessible. Another result of Green stays that the whole \(p\)-th syzygy space \[ K_{p}(d) = \bigoplus_{q = - \infty}^{\infty}K_{p,q}(d) \] is captured by the weight \(q=1\) and for \(d \geq p\). The main result of the paper under review describes the asymptotics of \(K_{p,1}(d)\). More precisely the authors show the following.
Theorem.
Pick \(p \geq 1\) and assume that \(\dim V \geq p+1\). Then as \(d\) grows, \(K_{p,1}(d)\) contains
i) exactly on the order of \(d^{p}\) distinct irreducible representations,
ii) exactly on the order of \(d^{ {p+1 \choose 2} }\) irreducible representations counting multiplicities.

MSC:

14N05 Projective techniques in algebraic geometry
13D02 Syzygies, resolutions, complexes and commutative rings
20G05 Representation theory for linear algebraic groups

Citations:

Zbl 0559.14009
Full Text: DOI

References:

[1] Abramovich, D., Wang, J.: Equivariant resolution of singularities in characteristic 0. Math. Res. Lett. 4, 427-433 (1997) · Zbl 0906.14005 · doi:10.4310/MRL.1997.v4.n3.a11
[2] Bruns, W., Conca, A., Römer T.: Koszul cycles. In: Combinatorial aspects of Commutative Algebra and Algebraic Geometry. Proceedings of the Abel Symposium 17-32 (2009) · Zbl 0999.14016
[3] Bruns, W., Conca, A., Römer, T.: Koszul homology and syzygies of Veronese subalgebras. Math. Ann. 351, 761-779 (2011) · Zbl 1238.13020 · doi:10.1007/s00208-010-0616-1
[4] Ein, L., Lazarsfeld, R.: Asymptotic syzygies of algebraic varieties. Invent. Math. 190(3), 603-646 (2012) · Zbl 1262.13018 · doi:10.1007/s00222-012-0384-5
[5] Fulton, W., Harris, J.: Representation theory, a first course. Springer, New York (1991) · Zbl 0744.22001
[6] Fulton, W.: Young tableaux, With applications to Representation Theory and Geometry. Cambridge Univ Press, Cambridge (1997) · Zbl 0878.14034
[7] Green, M.: Koszul cohomology and the geometry of projective varieties, II. J. Diff. Geom. 20, 279-289 (1984) · Zbl 0559.14009
[8] Grosshans, F.: Algebraic homogeneous spaces and invariant theory. Springer, Berlin (1997) · Zbl 0886.14020
[9] Hardy, G.H.: Ramanujan: Twelve lectures on subjects suggested by his life and work, 3rd edn., Chelsea Publ. Co., New York, Ch. 6 83-100, and Ch. 8 113-131, (1999) · Zbl 1262.13018
[10] Howe, R.: Asymptotics of dimensions of invariants for finite groups. J. Algebra 122, 374-379 (1989) · Zbl 0693.20005 · doi:10.1016/0021-8693(89)90223-8
[11] Kaveh, K.: A remark on asymptotic of highest weights in tensor powers of a representation, [math.RT] (2010). arxiv:1002.1984v1 · Zbl 1373.20060
[12] Kaveh, K., Khovanskii, A.G.: Convex bodies associated to actions of reductive groups. Mosc. Math. 12(2), 369-396,461 (2012) · Zbl 1284.14061
[13] Khovanskii, A.G.: Newton polyhedron, Hilbert polynomial and sums of finite sets. Funct. Anal. Appl. 26, 276-281 (1993) · Zbl 0809.13012 · doi:10.1007/BF01075048
[14] Lazarsfeld, R., Musta, M.: Convex bodies associated to linear series. Ann. Sci. Éc. Norm. Supér. 42(5), 783-835 (2009) · Zbl 1182.14004
[15] Okounkov, A.: Brunn-Minkowski inequality for multiplicities. Invent. Math. 125(3), 405-411 (1996) · Zbl 0893.52004 · doi:10.1007/s002220050081
[16] Ottaviani, G., Paoletti, R.: Syzygies of Veronese embeddings. Compos. Math. 125, 31-37 (2001) · Zbl 0999.14016 · doi:10.1023/A:1002662809474
[17] Ottaviani, G., Rubei, E.: Resolutions of homogeneous bundles on \[\mathbb{P}^2\] P2. Ann. Inst. Fourier (Grenoble) 55(3), 973-1015 (2005) · Zbl 1079.14051 · doi:10.5802/aif.2119
[18] Paoletti, R.: The asymptotic growth of equivariant sections of positive and big line bundles. Rocky Mount. J. Math. 35(6), 2089-2105 (2005) · Zbl 1121.32008 · doi:10.1216/rmjm/1181069630
[19] Raicu, C.: Representation stability for syzygies of line bundles on Segre-Veronese varieites, [math.AG] (2012). arXiv:1209.1183 · Zbl 1121.32008
[20] Raicu, C.: Secant varieties of Segre-Veronese varieties. Algebra Number Theory 6(8), 1817-1868 (2012) · Zbl 1273.14102 · doi:10.2140/ant.2012.6.1817
[21] Rubei, E.: A result on resolutions of Veronese embeddings. Ann. Univ. Ferrar Sez. VII 50, 151-165 (2004) · Zbl 1133.14301
[22] Snowden, A.: Syzygies of Segre embeddings and \[\Delta\] Δ-modules. Duke Math. J. 162(2), 225-277 (2013) · Zbl 1279.13024 · doi:10.1215/00127094-1962767
[23] Stanley, R.P.: Enumerative Combinatorics, vol. 2. Cambridge Univ. Press, Cambridge (1999) · Zbl 0928.05001 · doi:10.1017/CBO9780511609589
[24] Tate, T., Zelditch, S.: Lattice path combinatorics and asymptotics of multiplicities of weights in tensor powers. J. Funct. Anal. 217(2), 402-447 (2004) · Zbl 1062.22026 · doi:10.1016/j.jfa.2004.01.004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.