×

Modelling of psychological behavior on the basis of ultrametric mental space: encoding of categories by balls. (English) Zbl 1260.91221

Summary: In this paper we present a model of processing of mental information based on encoding by points of ultrametric space. Basic mental entities categories are encoded by ultrametric balls. Our model describes processes which take place in subconsciousness. It seems that ultrametric is a right tool for modeling of unconscious mental processes. Properties of ultrametric balls match well properties of unconscious representation of information which have been discussed in psychology.

MSC:

91E30 Psychophysics and psychophysiology; perception
91E10 Cognitive psychology
37P20 Dynamical systems over non-Archimedean local ground fields
Full Text: DOI

References:

[1] S. Albeverio, A. Yu. Khrennikov and P. Kloeden, ”Memory retrieval as a p-adic dynamical system,” Biosystems 49, 105–115 (1999). · doi:10.1016/S0303-2647(98)00035-5
[2] D. Amit, Modeling Brain Function (Cambridge Univ. Press, Cambridge, 1989). · Zbl 0709.92001
[3] R. Ashby, Design of a brain (Chapman-Hall, London, 1952). · Zbl 0202.19105
[4] B. J. Baars, In the theater of consciousness, The workspace of mind (Oxford University Press, Oxford, 1997).
[5] M. Bar, ”Top-down facilitation of visual object recognition,” in Neurobiology of attention, pp. 140–145, Eds. L. Itti, G. Rees and J. K. Tsotsos (Elsevier, Amsterdam, 2005).
[6] W. Bechtel and A. Abrahamsen, Connectionism and the mind (Basil Blackwell, Cambridge, 1991).
[7] W. Bechterew, Die Funktionen der Nervencentra (Fischer, Jena, 1911).
[8] J. Benois-Pineau, A. Yu. Khrennikov and N. V. Kotovich, ”Segmentation of images in p-adic and Euclidean metrics,” Dokl. Akad. Nauk. 381(5), 604–609. English Translation: Doklady Mathematics 64 (3), 450–455 (2001). · Zbl 1042.68687
[9] C. Blomberg, H. Liljenstrym, B. I. B. Lindahl and P. Arhem, (Eds), ”Mind and Matter: Essays from Biology, Physics and Philosophy: An Introduction,” J. Theor. Biol. 171 (1994).
[10] N. Chomsky, ”Formal properties of grammas,” in Handbook of Mathematical Psychology, pp. 323–418, Eds. R. D. Luce, R. R. Bush and E. Galanter (Wiley, New York, 1963).
[11] P. S. Churchland and T. Sejnovski, The Computational Brain (MITP, Cambridge, 1992).
[12] A. Clark, Psychological Models and Neural Mechanisms. An Examination of Reductionism in Psychology (Clarendon Press, Oxford, 1980).
[13] H. Damasio and A. R. Damasio, Lesion Analysis in Neuropsychology (Oxford Univ. Press, New-York, 1989).
[14] A. R. Damasio, Descartes’ Error: Emotion, Reason, and the Human Brain (Penguin, 2005).
[15] B. Dragovich and A. Dragovich, ”A p-adic model of DNA sequence and genetic code,” p-Adic Numbers, Ultrametric Analysis and Applications 1(1), 34–41 (2009); arXiv:q-bio.GN/0607018v1 (2006). · Zbl 1187.92039 · doi:10.1134/S2070046609010038
[16] D. Dubischar, V. M. Gundlach, O. Steinkamp and A. Yu. Khrennikov, ”A p-adic model for the process of thinking disturbed by physiological and information noise,” J. Theor. Biology 197, 451–467 (1999). · doi:10.1006/jtbi.1998.0887
[17] C. Eliasmith, ”The third contender: a critical examination of the dynamicist theory of cognition,” Phil. Psychology 9(4), 441–463 (1996). · doi:10.1080/09515089608573194
[18] J. A. Fodor and Z. W. Pylyshyn, ”Connectionism and cognitive architecture: a critical analysis,” Cognition 280, 3–17 (1988). · doi:10.1016/0010-0277(88)90031-5
[19] S. Freud, The Interpretation of Dreams (Standard Edition, 4 and 5, 1900).
[20] S. Freud, New Introductory Lectures on Psychoanalysis (Norton, New York, 1933).
[21] J. M. D. Fuster, The Prefrontal Cortex: Anatomy, Physiology, and Neuropsychology of the Frontal Lobe (Lippincott-Raven, Philadelphia, 1997).
[22] J. F. Herbart, The Application of Psychology to the Science of Education (Charles Scribners Sons, 1898).
[23] J. J. Hopfield, ”Neural networks and physical systems with emergent collective computational abilities,” Proc. Natl. Acad. Sci. USA 79, 1554–2558 (1982). · Zbl 1369.92007 · doi:10.1073/pnas.79.8.2554
[24] F. C. Hoppensteadt, An Introduction to the Mathematics of Neurons: Modeling in the Frequency Domain (Cambridge Univ. Press, New York, 1997). · Zbl 0888.92007
[25] D. Hubel and T. Wiesel, ”Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex,” J. Physiol. 160, 106–154 (1962). · doi:10.1113/jphysiol.1962.sp006837
[26] Ivanitsky, A. M.: ”Brain’s physiology and the origin of the human’s subjective world,” J. High Nerves Activity 49,(5), 707–713 (1999).
[27] A. Yu. Khrennikov, Non-Archimedean Analysis: Quantum Paradoxes, Dynamical Systems and Biological Models (Kluwer, Dordrecht, 1997).
[28] A. Yu. Khrennikov, ”Human subconscious as the p-adic dynamical system,” J. Theor. Biology 193, 179–196 (1998). · doi:10.1006/jtbi.1997.0604
[29] A. Yu. Khrennikov, ”p-Adic dynamical systems: description of concurrent struggle in biological population with limited growth,” Dokl. Akad. Nauk 361, 752–763 (1998). · Zbl 0955.92028
[30] A. Yu. Khrennikov, ”Description of the operation of the human subconscious by means of p-adic dynamical systems,” Dokl. Akad. Nauk 365, 458–460 (1999). · Zbl 0964.91045
[31] A. Yu. Khrennikov, ”p-Adic discrete dynamical systems and collective behaviour of information states in cognitive models,” Discrete Dynamics in Nature and Society 5, 59–69 (2000). · Zbl 1229.37128 · doi:10.1155/S1026022600000406
[32] A. Yu. Khrennikov, ”Classical and quantum mechanics on p-adic trees of ideas,” Bio Systems 56, 95–120 (2000). · doi:10.1016/S0303-2647(00)00077-0
[33] A. Yu. Khrennikov, Classical and Quantum Mental Models and Freud’s Theory of Unconscious Mind, Series Math. Modelling in Phys., Engineering and Cognitive Sciences, 1 (Växjö Univ. Press, Växjö, 2002).
[34] A. Yu. Khrennikov and N. V. Kotovich, ”Representation and compression of images with the aid of the m-adic coordinate system,” Dokl. Akad. Nauk. 387(2), 159–163 (2002). · Zbl 1223.94003
[35] A. Yu. Khrennikov, Information Dynamics in Cognitive, Psychological, Social, and Anomalous Phenomena (Kluwer, Dordreht, 2004). · Zbl 1175.91151
[36] A. Yu. Khrennikov, ”Probabilistic pathway representation of cognitive information,” J. Theor. Biology 231, 597–613 (2004). · doi:10.1016/j.jtbi.2004.07.015
[37] A. Yu. Khrennikov, N. V. Kotovich and E. L. Borzistaya, ”Compression of images with the aid of representation by p-adic maps and approximation by Mahler’s polynomials,” Dokl. Akad. Nauk 396(3), 305–308. English Translation: Doklady Mathematics 69 (3), 373–377 (2004). · Zbl 1278.94011
[38] A. Yu. Khrennikov, ”p-Adic information space and gene expression,” in Integrative Approaches to Brain Complexity, p. 14, Eds. S. Grant, N. Heintz and J. Noebels (Wellcome Trust Publ., 2006).
[39] A. Yu. Khrennikov and S. V. Kozyrev, ”Genetic code on the dyadic plane,” Physica A: Stat. Mech. Appl. 381, 265–272 (2007); arXiv:q-bio/0701007. · doi:10.1016/j.physa.2007.03.018
[40] A. Yu. Khrennikov, ”Toward an adequate mathematical model of mental space: Conscious/unconscious dynamics on m-adic trees,” Biosystems 90(3), 656–675 (2007). · doi:10.1016/j.biosystems.2007.02.004
[41] R. Lauro-Grotto, ”The unconscious as an ultrametric set,” American Imago 64, 535–543 (2007). · doi:10.1353/aim.2008.0009
[42] A. Luczak, P. Bartho, S. L. Marguet, G. Buzsaki and K. D. Hariis, ”Neocortical spontaneous activity in vivo: cellular heterogeneity and sequential structure,” Preprint of CMBN, Rutgers Univ. (2007).
[43] F. Murtagh, ”On ultrametricity, data coding, and computation,” J. Classification 21, 167–184 (2004). · Zbl 1084.62052 · doi:10.1007/s00357-004-0015-y
[44] M. Pitkänen, TGD Inspired Theory of Consciousness with Applications to Biosystems, Electronic book, http://www.physics.helsinki.fi/matpitka/cbookI.html (1998).
[45] M. Pitkänen, ”Could genetic code be understood number theoretically?” Electronic preprint, www.helsinki.fi/matpitka/pdfpool/genenumber.pdf (2006).
[46] A. Revonsuo and J. Newman, ”Binding and consciousness,” Consciousness and Cognition 8, 123–127 (1999). · doi:10.1006/ccog.1999.0393
[47] E. Rosch, ”Cognitive reference points,” Cognitive Psychology 7, 532–547 (1975). · doi:10.1016/0010-0285(75)90021-3
[48] J. R. Smythies, Brain Mechanisms and Behaviour (Blackwell Sc. Publ., Oxford, 1970).
[49] S. M. Stringer and E. Rolls, ”Invariant object recognition in the visual system with novel views of 3D objects,” Neural. Comput. 14, 2585–2596 (2002). · Zbl 1057.68676 · doi:10.1162/089976602760407982
[50] S. H. Strogatz, Nonlinear Dynamics and Chaos with Applications to Physics, Biology, Chemistry, and Engineering (Addison Wesley, 1994).
[51] A. Thiele and G. Stoner, ”Neuronal synchrony does not correlate with motion coherence in cortical area MT,” Nature 421, 366–370 (2003). · doi:10.1038/nature01285
[52] T. van Gelder and R. Port, ”It’s about time: Overview of the dynamical approach to cognition,” in Mind as motion: Explorations in the dynamics of cognition, pp. 1–43, Eds. T. van Gelder and R. Port, (MITP, Cambridge, Mass, 1995).
[53] T. van Gelder, ”What might cognition be, if not computation?” J. Philosophy 91, 345–381 (1995).
[54] V. S. Vladimirov, I. V. Volovich and E. I. Zelenov, p-Adic Analysis and Mathematical Physics (World Sc. Publ., Singapore, 1994). · Zbl 0812.46076
[55] R. J. Watt and W. A. Phillips, ”The function of dynamical grouping in vision,” Trends Cogn. Sc. 4, 447–454 (2000). · doi:10.1016/S1364-6613(00)01553-9
[56] H. Zimmer, A. Mecklinger, and U. Lindenberger, Handbook of Binding and Memory. Perspectives from Cognitive Neuroscience (Oxford Univ. Press, Oxford, 2006).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.