×

Automorphisms of a free group of infinite rank. (English) Zbl 1158.20009

St. Petersbg. Math. J. 19, No. 2, 215-223 (2008); translation from Algebra Anal. 19, No. 2, 74-85 (2007).
The authors study the automorphisms \(\operatorname{Aut}(F_\infty)\) of the free group \(F_\infty\) of infinite countable rank. They describe this group in terms of generators which arise naturally. They use the sets of upper triangular, lower triangular, permutational and column finite automorphisms with the obvious meaning. These sets form subgroups of \(\operatorname{Aut}(F_\infty)\). They define a convenient generalization of the above called strings in terms of which they describe \(\operatorname{Aut}(F_\infty)\). We omit here the detailed definitions of the above.
Their main results states that: Each automorphism in \(\operatorname{Aut}(F_\infty)\) is the composition of some IA-automorphism and some automorphism belonging to the subgroup generated by the lower triangular and the column-finite automorphisms.
They also give many theorems describing subgroups of \(\operatorname{Aut}(F_\infty)\), for example one of them states that: The group \(\operatorname{Aut}(F_\infty)\) contains two infinite countable families: one of maximal normal subgroups and the other of normal incomparable subgroups.
They finish by giving some results on the automorphism group of the infinitely generated relatively free group corresponding to some varieties of groups.

MSC:

20E05 Free nonabelian groups
20F28 Automorphism groups of groups
20E36 Automorphisms of infinite groups
Full Text: DOI

References:

[1] Roger M. Bryant and David M. Evans, The small index property for free groups and relatively free groups, J. London Math. Soc. (2) 55 (1997), no. 2, 363 – 369. · Zbl 0867.20032 · doi:10.1112/S0024610796004711
[2] R. M. Bryant and J. R. J. Groves, Automorphisms of free metabelian groups of infinite rank, Comm. Algebra 20 (1992), no. 3, 783 – 814. · Zbl 0752.20011 · doi:10.1080/00927879208824375
[3] R. M. Bryant and C. K. Gupta, Automorphisms of free nilpotent-by-abelian groups, Math. Proc. Cambridge Philos. Soc. 114 (1993), no. 1, 143 – 147. · Zbl 0798.20024 · doi:10.1017/S0305004100071474
[4] Roger M. Bryant and Olga Macedońska, Automorphisms of relatively free nilpotent groups of infinite rank, J. Algebra 121 (1989), no. 2, 388 – 398. · Zbl 0674.20017 · doi:10.1016/0021-8693(89)90074-4
[5] R. G. Burns and I. H. Farouqi, Maximal normal subgroups of the integral linear group of countable degree, Bull. Austral. Math. Soc. 15 (1976), no. 3, 439 – 451. · Zbl 0376.20030 · doi:10.1017/S0004972700022875
[6] R. G. Burns and Lian Pi, Generators for the bounded automorphisms of infinite-rank free nilpotent groups, Bull. Austral. Math. Soc. 40 (1989), no. 2, 175 – 187. · Zbl 0684.20028 · doi:10.1017/S0004972700004287
[7] Bruce Chandler and Wilhelm Magnus, The history of combinatorial group theory, Studies in the History of Mathematics and Physical Sciences, vol. 9, Springer-Verlag, New York, 1982. A case study in the history of ideas. · Zbl 0498.20001
[8] Joel M. Cohen, Aspherical 2-complexes, J. Pure Appl. Algebra 12 (1978), no. 1, 101 – 110. · Zbl 0405.57001 · doi:10.1016/0022-4049(78)90024-5
[9] Robert Cohen, Classes of automorphisms of free groups of infinite rank, Trans. Amer. Math. Soc. 177 (1973), 99 – 120. · Zbl 0278.20033
[10] Richard G. Cooke, Infinite Matrices and Sequence Spaces, Macmillan & Co., Ltd., London, 1950. · Zbl 0040.02501
[11] John D. Dixon and Brian Mortimer, Permutation groups, Graduate Texts in Mathematics, vol. 163, Springer-Verlag, New York, 1996. · Zbl 0951.20001
[12] I. H. Farouqi, On an infinite integral linear group, Bull. Austral. Math. Soc. 4 (1971), 321 – 342. · Zbl 0209.32905 · doi:10.1017/S0004972700046670
[13] Waldemar Hołubowski, Subgroups of infinite triangular matrices containing diagonal matrices, Publ. Math. Debrecen 59 (2001), no. 1-2, 45 – 50. · Zbl 1012.20047
[14] Waldemar Hołubowski, Parabolic subgroups of Vershik-Kerov’s group, Proc. Amer. Math. Soc. 130 (2002), no. 9, 2579 – 2582. · Zbl 1012.20048
[15] Waldemar Hołubowski, Most finitely generated subgroups of infinite unitriangular matrices are free, Bull. Austral. Math. Soc. 66 (2002), no. 3, 419 – 423. · Zbl 1021.20037 · doi:10.1017/S0004972700040272
[16] Waldemar Hołubowski, Free subgroups of the group of infinite unitriangular matrices, Internat. J. Algebra Comput. 13 (2003), no. 1, 81 – 86. · Zbl 1060.20043 · doi:10.1142/S0218196703001341
[17] -, A new measure of growth for groups and algebras (submitted).
[18] W. Hołubowski and N. A. Vavilov, Infinite dimensional general linear groups (in preparation).
[19] Roger C. Lyndon and Paul E. Schupp, Combinatorial group theory, Springer-Verlag, Berlin-New York, 1977. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 89. · Zbl 0368.20023
[20] Olga Macedońska-Nosalska, Note on automorphisms of a free abelian group, Canad. Math. Bull. 23 (1980), no. 1, 111 – 113. · Zbl 0447.20028 · doi:10.4153/CMB-1980-016-6
[21] Olga Macedonska-Nosalska, The abelian case of Solitar’s conjecture on infinite Nielsen transformations, Canad. Math. Bull. 28 (1985), no. 2, 223 – 230. · Zbl 0539.20014 · doi:10.4153/CMB-1985-026-x
[22] Wilhelm Magnus, Abraham Karrass, and Donald Solitar, Combinatorial group theory: Presentations of groups in terms of generators and relations, Interscience Publishers [John Wiley & Sons, Inc.], New York-London-Sydney, 1966. · Zbl 0138.25604
[23] Hanna Neumann, Varieties of groups, Springer-Verlag New York, Inc., New York, 1967. · Zbl 0251.20001
[24] Jakob Nielsen, Die Isomorphismengruppe der freien Gruppen, Math. Ann. 91 (1924), no. 3-4, 169 – 209 (German). · JFM 50.0078.04 · doi:10.1007/BF01556078
[25] James D. Sharp and Simon Thomas, Uniformization problems and the cofinality of the infinite symmetric group, Notre Dame J. Formal Logic 35 (1994), no. 3, 328 – 345. · Zbl 0824.03027 · doi:10.1305/ndjfl/1040511341
[26] W. Sierpiński, Sur une décomposition d’ensembles, Monatsh. Math. Phys. 35 (1928), no. 1, 239 – 242 (French). · JFM 54.0092.01 · doi:10.1007/BF01707443
[27] Simon Thomas, The cofinalities of the infinite-dimensional classical groups, J. Algebra 179 (1996), no. 3, 704 – 719. · Zbl 0846.20005 · doi:10.1006/jabr.1996.0032
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.