×

Bitableaux bases of the quantum coordinate algebra of a semisimple group. (English) Zbl 1147.17013

Summary: We extend the Standard Basis Theorem of Rota et al. [J. Désarménien, J. P. S. Kung and G.-C. Rota, Adv. Math. 27, 63–92 (1978; Zbl 0373.05010)] to the setting of quantum symmetrizable Kac-Moody algebras. In particular, we obtain a procedure to give a presentation of the quantum coordinate algebra of any semisimple group, for generic \(q\). More precisely, given any integrable module \(V\) of a quantum symmetrizable Kac-Moody algebra \(U_{q}(\mathfrak g)\), we obtain a generating set of the ideal of relations among the matrix coefficients of \(V\), and we give an upper bound for the degrees of these polynomials. Our approach is based on the theory of crystal bases and Littelmann’s generalization of the plactic algebra [cf. P. Littelmann, Adv. Math. 124, 312–331 (1996; Zbl 0892.17009)].

MSC:

17B37 Quantum groups (quantized enveloping algebras) and related deformations
17B67 Kac-Moody (super)algebras; extended affine Lie algebras; toroidal Lie algebras
Full Text: DOI

References:

[1] Chari, V.; Pressley, A., A Guide to Quantum Groups (1994), Cambridge Univ. Press · Zbl 0839.17009
[2] Huang, R. Q.; Zhang, J. J., Standard Basis Theorem for quantum linear groups, Adv. Math., 102, 202-229 (1993) · Zbl 0793.05143
[3] Kashiwara, M., Crystalizing the \(q\)-analogue of universal enveloping algebra, Commun. Math. Phys., 133, 249-260 (1990) · Zbl 0724.17009
[4] Kashiwara, M., On crystal bases of the \(q\)-analogue of universal enveloping algebras, Duke Math. J., 63, 2 (1991) · Zbl 0739.17005
[5] Lakshmibai, V.; Reshetikhin, N. Y., Quantum deformation of \(SL_n / B\) and its Schubert varieties, (Kashiwara, M.; Miwa, T., Special Functions, ICM-90 Satellite Conference Proceedings (1991), Springer) · Zbl 0779.17014
[6] Leclerc, B.; Thibon, J. Y., The Robinson-Schensted correspondence, crystal bases, and the quantum straightening at \(q = 0\), Electron. J. Combin., 3, 2 (1996) · Zbl 0852.05079
[7] Lecouvey, C., Schensted-type correspondence, Plactic monoid and Jeu de Taquin for type \(C_n\), J. Algebra, 247, 295-331 (1996) · Zbl 1007.05098
[8] Lecouvey, C., Schensted-type correspondence and plactic monoids for types \(B_n\) and \(D_n\), J. Algebraic Combin., 18, 99-133 (2003) · Zbl 1023.05133
[9] Lecouvey, C., Schensted-type correspondence for type \(G_2\) and computation of the canonical basis of a finite-dimensional \(U_q(G_2)\)-module, 19 pages
[10] Littelmann, P., A plactic algebra for semisimple Lie algebras, Adv. Math., 124, 312-331 (1996) · Zbl 0892.17009
[11] Lusztig, G., Introduction to Quantum Groups (1993), Birkhäuser: Birkhäuser Boston · Zbl 0788.17010
[12] V.L. Popov, Generators and relations of the affine coordinate ring of a connected semisimple algebraic group, preprint, 2000; V.L. Popov, Generators and relations of the affine coordinate ring of a connected semisimple algebraic group, preprint, 2000
[13] Fadeev, L. D.; Reshetikhin, N. Y.; Takhtajan, L. A., Quantization of Lie groups and Lie algebras, Leningrad Math. J., 1, 193-225 (1990) · Zbl 0715.17015
[14] Désarménien, J.; Kung, J. P.; Rota, G. C., Invariant theory, Young bitableaux, and combinatorics, Adv. Math., 27, 63-92 (1978) · Zbl 0373.05010
[15] Sasaki, N., Quantization of Lie group and algebra of \(G_2\) type in the Fadeev-Reshetikhin-Takhtajan approach, J. Math. Phys., 36, 4476-4488 (1995) · Zbl 0856.17016
[16] Korogodski, L. I.; Soibelman, Y. S., Algebras of Functions: Part I, Math. Surveys Monogr., vol. 56 (1998), Amer. Math. Soc. · Zbl 0923.17017
[17] Taft, E.; Towber, J., Quantum deformation of flag schemes and Grassmann schemes. I. A \(q\)-deformation of the shape-algebra for \(GL(n)\), J. Algebra, 142, 1-36 (1991) · Zbl 0739.17007
[18] Takeuchi, M., Quantum orthogonal and symplectic groups and their embedding into quantum GL, Proc. Japan Acad. Ser. A, 65, 55-58 (1989) · Zbl 0694.16009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.