×

\(q\)-moment measures and applications: a new approach via optimal transport. (English) Zbl 1482.49012

Summary: In 2017, Bo’az Klartag obtained a new result in differential geometry on the existence of affine hemisphere of elliptic type. In his approach, a surface is associated with every convex function \(\varphi : \mathbb{R}^n\to(0,+\infty)\) and the condition for the surface to be an affine hemisphere involves the \(2\)-moment measure of \(\varphi\) (a particular case of \(q\)-moment measures, i.e measures of the form \((\nabla\varphi)_\#\varphi^{-(n+q)}\) for \(q > 0\)). In Klartag’s paper, \(q\)-moment measures are studied through a variational method requiring to minimize a functional among convex functions, which is achieved using the Borell-BrascampLieb inequality. In this paper, we attack the same problem through an optimal transport approach, since the convex function \(\varphi\) is a Kantorovich potential (as already done for moment measures in a previous paper). The variational problem in this new approach becomes the minimization of a local functional and a transport cost among probability measures \(\varrho\) and the optimizer \(\varrho_\mathrm{opt}\) turns out to be of the form \(\varrho_\mathrm{opt}=\varphi^{-(n+q)}\)

MSC:

49J45 Methods involving semicontinuity and convergence; relaxation
14R05 Classification of affine varieties
35J96 Monge-Ampère equations
49Q22 Optimal transportation
26B25 Convexity of real functions of several variables, generalizations

References:

[1] L. Ambrosio, N. Gigli, G. Savaré:Gradient Flows in Metric Spaces and in the Space of Probability Measures, 2nd ed., Lectures in Mathematics ETH Zürich, Birkhäuser, Basel (2008). · Zbl 1145.35001
[2] S. Artstein-Avidan, B. Klartag, M. Vitali:The Santaló point of a function, and a functional form of the Santaló inequality, Mathematika 51/1-2 (2004) 33-48. · Zbl 1121.52021
[3] R. J. Berman, B. Berndtsson:Real Monge-Ampère equations and Kähler-Ricci solitons on toric log Fano varieties, Ann. Fac. Sci. Toulouse Math. (6), 22/4 (2013) 649-711. · Zbl 1283.58013
[4] A. Blanchet, P. Mossay, F. Santambrogio:Existence and uniqueness of equilibrium for a spatial model of social interactions, Int. Econ. Rev. 57/1 (2016) 31-60. · Zbl 1404.91220
[5] G. Bouchitté, G. Buttazzo:New lower semicontinuity results for nonconvex functionals defined on measures, Nonlinear Analysis 15 (1990) 679-692. · Zbl 0736.49007
[6] Y. Brenier:Décomposition polaire et réarrangement monotone des champs de vecteurs, C. R. Acad. Sci. Paris Sér. I Math. 305/19 (1987) 805-808. · Zbl 0652.26017
[7] D. Cordero-Erausquin, B. Klartag:Moment measures, J. Functional Analysis 268/12 (2015) 3834-3866. · Zbl 1315.32004
[8] A. Figalli:The Monge-Ampère Equation and its Applications, Zurich Lectures in Advanced Mathematics, European Mathematical Society, Zürich (2017). · Zbl 1435.35003
[9] R. Jordan, D. Kinderlehrer, F. Otto:The variational formulation of the FokkerPlanck equation, SIAM J. Math. Analysis 29(1) (1998) 1-17. · Zbl 0915.35120
[10] B. Klartag:Affine hemispheres of elliptic type, Algebra i Analiz 29 (2017) 145-188. · Zbl 1396.53013
[11] R. J. McCann:A convexity principle for interacting gases, Adv. Math. 128/1 (1997) 153-159. · Zbl 0901.49012
[12] M. Meyer, A. Pajor:On the Blaschke-Santaló inequality, Arch. Math. 55 (1990) 82- 93. · Zbl 0718.52011
[13] R. T. Rockafellar:Convex Analysis, Princeton University Press, Princeton (1970). · Zbl 0193.18401
[14] F. Santambrogio:Optimal Transport for Applied Mathematicians, Progress in Nonlinear Differential Equations and Their Applications 87, Birkhäuser, Basel (2015). · Zbl 1401.49002
[15] F. Santambrogio:Dealing with moment measures via entropy and optimal transport, J. Functional Analysis 271/2 (2016) 418-436. · Zbl 1343.49075
[16] F. Santambrogio:{Euclidean, Metric, and Wasserstein}gradient flows: an overview, Bull. Math. Sciences 7 (2017) 87-154. · Zbl 1369.34084
[17] C. Villani:Topics in Optimal Transportation, Graduate Studies in Mathematics 58, American Mathematical Society, Providence (2003). · Zbl 1106.90001
[18] C. Villani:Optimal Transport. Old and New, Grundlehren der Mathematischen Wissenschaften 338, Springer, Berlin (2009). · Zbl 1156.53003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.