×

Quotients of abelian surfaces. (English) Zbl 0852.14016

Let \(L\) be an abelian function field of two variables over \(\mathbb{C}\) and \(K\) a Galois subfield of \(L\), i.e., \(L\) is a finite algebraic Galois extension of \(K\). We classify such \(K\)’s by a suitable complex representation of the Galois group \(G= \text{Gal} (L/K)\), which turns out to be solvable. Let \(A\) be the abelian surface with the function field \(L\). For \(g\in G\), we have a complex representation \(gz= M(g)z+ t(g)\), where \(M(g)\in GL_2 (\mathbb{C})\), \(z\in \mathbb{C}^2\), and \(t(g)\in \mathbb{C}^2\). Fixing the representation, we put \(G_0= \{g\in G\mid M(g)\) is the unit matrix}, \(H= \{M(g) \mid g\in G\}\) and \(H_1 = \{M(g)\in H\mid \text{det } M(g)= 1\}\). Let \(S\) be a relatively minimal model of \(A/G\) and \(F(G)\) denote the set of fixed points of \(G\). Let \([a, b]\) and \([a, b]^*\) denote the matrices \((\begin{smallmatrix}a&0\\ 0&b\end{smallmatrix})\) and \((\begin{smallmatrix} 0&b\\ a&0\end{smallmatrix})\). Let \(1_2\) denote the unit matrix. If a group is generated by \(g_1, \dots, g_m\), then it is denoted by \(\langle g_1, \dots, g_m \rangle\). Put \(e_n= \exp (2\pi \sqrt {-1} /n)\). Then the main result is stated as follows, where \(n= 2, 3, 4\) or 6:
\[ \begin{array}{|c|c|} \hline H&\text{structure of $S$}\\ \hline =\{1_2\}&\text{abelian surface}\\ \hline \neq\{1_2\}&\text{K3 structure}\\ \hline \neq H_1 &\begin{array}{c|c} H=\langle[1,e_n]\rangle &\begin{array}{c|c} F(G)=\emptyset&\text{hyperelliptic surface}\\ \hline F(G)\not=\emptyset &\text{elliptic ruled surface}\\ \end{array}\\ \hline H=\langle[-1,1],[1,-1]\rangle\text{ or } \langle[-1,1]^*,[1,-1]\rangle &\begin{array}{c|c} F(G)=\text{ finite}&\text{Enriques surface}\\ \hline F(G)\supset\text{ curve}&\text{rational surface}\\ \end{array}\\ \hline \text{except the above}&\text{rational surface} \end{array}\\ \hline \end{array} \]
Especially we have that \(S\) is a rational surface if \(^\sharp H>24\) or the degree of the eigenvalues of \(M\) is 4.

MSC:

14K99 Abelian varieties and schemes
14M17 Homogeneous spaces and generalizations
14J10 Families, moduli, classification: algebraic theory
14J20 Arithmetic ground fields for surfaces or higher-dimensional varieties
11R58 Arithmetic theory of algebraic function fields
Full Text: DOI

References:

[1] Fujiki, A., Finite automorphism groups of complex tori of dimension two, Publ. RIMS, Kyoto Univ., 24 (1988), 1-97. · Zbl 0654.32015 · doi:10.2977/prims/1195175326
[2] Hall, M, The theory of groups, Macmillan 1959. · Zbl 0084.02202
[3] Katsura, T., Generalized Kummer surfaces and their unirationality in characteristic p, J. Fac. Sci. Univ. Tokyo, Sect. IA, 34 (1987), 1-41. · Zbl 0664.14023
[4] Laufer, H. B., Normal two-dimensional singularities, Ann. of Math. Stud., 71, Princeton Univ. Press 1971. · Zbl 0245.32005
[5] Suwa, T., On hyperelliptic surfaces, J. Fac. Sci. Univ. Tokyo, Sect. I, XVI (1970), 469-476. · Zbl 0256.14014
[6] Tokunaga, H. and Yoshihara, H., Degree of irrationality of abelian surfaces, to appear in J. Algebra. · Zbl 0837.14009 · doi:10.1006/jabr.1995.1170
[7] Yoshihara, H., Structure of complex tori with the automorphisms of maximal degree, Tsukuba J. Math., 4 (1980), 303-311. · Zbl 0491.32024
[8] , Galois subfields of abelian functon field of two variables, Proc. Japan Acad., 70 (1994), 3-5. · Zbl 0848.14023 · doi:10.3792/pjaa.70.3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.