×

Sensitivity-based finite element model updating using dynamic condensation approach. (English) Zbl 1535.74657

Summary: An accurate finite element (FE) model is frequently used in damage detection, optimization design, reliability analysis, nonlinear analysis, and so forth. The FE model updating of large-scale structures is usually time-consuming or even impossible. This paper proposes a dynamic condensation approach for model updating of large-scale structures. The eigensolutions are calculated from a condensed eigenequation and the eigensensitivities are calculated without selection of additional master DOFs, which is helpful to improve the efficiency of FE model updating. The proposed model updating method is applied to an eight-storey frame and the Jun Shan Yangtze Bridge. By employing the dynamic condensation approach, the number of iterations for the eigensensitivities is gradually increased according to the model updating process, which contributes to accelerate the convergence of model updating.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N25 Numerical methods for eigenvalue problems for boundary value problems involving PDEs
Full Text: DOI

References:

[1] Wang, D. S., Xiang, W., Zeng, P. and Zhu, H. P., Damage identification in shear-type structures using a proper orthogonal decomposition approach, J. Sound Vib.355 (2015) 135-149.
[2] Zhu, H. P., Mao, L. and Weng, S., A sensitivity-based structural damage identification method with unknown input excitation using transmissibility concept, J. Sound Vib.333 (26) (2014) 7135-7150.
[3] Yin, H. F., Fang, H. B., Wang, Q. and Wen, G. L., Design optimization of a MASH TL-3 concrete barrier using RBF-based metamodels and nonlinear finite element simulations, Eng. Struct.114 (2016) 122-134.
[4] Jensen, H. A., Mayorga, F. and Papadimitriou, C., Reliability sensitivity analysis of stochastic finite element models, Comput. Methods Appl. Mech. Eng.296 (2015) 327-351. · Zbl 1425.65113
[5] Li, D. Q., Xiao, T., Cao, Z. J., Zhou, C. B. and Zhang, L. M., Enhancement of random finite element method in reliability analysis and risk assessment of soil slopes using Subset Simulation, Landslides13 (2) (2016) 293-303.
[6] Li, L., Hu, Y. J. and Wang, X. L., A study on design sensitivity analysis for general nonlinear eigenproblems, Mech. Syst. Signal Process.34 (2013) 88-105.
[7] Alamdari, M. M., Li, J. C., Samali, B., Ahmadian, H. and Naghavi, A., Nonlinear joint model updating in assembled structures, J. Eng. Mech.140 (7) (2014) 1-11.
[8] Mottershead, J. E., Link, M. and Friswell, M. I., The sensitivity method in finite element model updating: A tutorial, Mech. Syst. Signal Process.25 (2011) 2275-2296.
[9] Law, S. S., Li, J. and Ding, Y., Structural response reconstruction with transmissibility concept in frequency domain, Mech. Syst. Signal Process.25 (3) (2011) 952-968.
[10] Mottershead, J. E. and Friswell, M. I., Model updating in structural dynamics: A survey, J. Sound Vib.167 (2) (1993) 347-375. · Zbl 0967.74525
[11] Abdullah, N. A. Z., Sani, M. S. M., Rahman, M. M. and Zaman, I., A review on model updating in structural dynamics, 3rd Int. Conf. Mechanical Engineering Research2015, Kuantan, Malaysia, , pp. 1-6.
[12] Friswell, M. I. and Mottershead, J. E., Finite Element Model Updating in Structural Dynamics (Kluwer Academic Publishers, 1995). · Zbl 0855.73002
[13] Weng, S., Xia, Y., Xu, Y. L. and Zhu, H. P., Substructure based approach to finite element model updating, Comput. Struct.89 (2011) 772-782.
[14] Weng, S., Zhu, H. P., Xia, Y., Ye, L. and Hu, X. Y., Construction of stiffness and flexibility for substructure-based model updating, Math. Probl. Eng.2013 (2013) 1-14.
[15] Guyan, R. J., Reduction of stiffness and mass matrices, AIAA J.3 (2) (1965) 380.
[16] O’ Callahan, J., A procedure for an improved reduced system (IRS) model, in The 7th Int. Modal Analysis Conf., 1989, Orlando, FL, USA, , pp. 17-21.
[17] Friswell, M. I., Model reduction using dynamic and iterated IRS techniques, J. Sound Vib.186 (2) (1995) 311-323. · Zbl 1049.74725
[18] Friswell, M. I., Garvey, S. D. and Penny, J. E. T., The convergence of the iterated IRS method, J. Sound Vib.211 (1) (1998) 123-132. · Zbl 1235.74279
[19] Xia, Y. and Lin, R. M., A new iterative order reduction (IOR) method for eigensolutions of large structures, Int. J. Numer. Methods Eng.59 (1) (2004) 153-172. · Zbl 1047.74024
[20] Xia, Y. and Lin, R. M., Improvement on the iterated IRS method for structural eigensolutions, J. Sound Vib.270 (2004) 713-727.
[21] He, H. X., Lv, Y. W. and Han, E. Z., Damage detection for continuous bridge based on static-dynamic condensation and extended Kalman filtering, Math. Probl. Eng.2014 (2014) 1-14. · Zbl 1407.93386
[22] Chen, Y. C., Zhang, B. J., Zhang, N. and Zheng, M. Y., A condensation method for the dynamic analysis of vertical vehicle-track interaction considering vehicle flexibility, J. Vib. Acoust.137 (4) (2015) 1-8.
[23] Weng, S., Zhu, A. Z., Zhu, H. P., Xia, Y., Mao, L. and Li, P. H., Dynamic condensation approach to the calculation of eigensensitivity, Comput. Struct.132 (2014) 55-64.
[24] Weng, S., Tian, W., Zhu, H. P., Xia, Y., Gao, F., Zhang, Y. T. and Li, J. J., Dynamic condensation approach to calculation of structural responses and response sensitivities, Mech. Syst. Signal Process.88 (2017) 302-317.
[25] Liu, Z. S. and Wu, Z. G., Iterative-order-reduction substructuring method for dynamic condensation of finite element models, AIAA J.49 (1) (2011) 87-96.
[26] Choi, D., Kim, H. and Cho, M., Iterative method for dynamic condensation combined with substructuring scheme, J. Sound Vib.317 (2008) 199-218.
[27] Li, J. and Hao, H., Substructure damage identification based on wavelet domain response reconstruction, Struct. Health Monit.13 (2014) 389-405.
[28] Weng, S., Zhu, H. P., Xia, Y. and Mao, L., Damage detection using the eigenparameter decomposition of substructural flexibility matrix, Mech. Syst. Signal Process.34 (2013) 19-38.
[29] Weng, S., Zhu, H. P., Xia, Y., Zhou, X. Q. and Mao, L., Substructuring approach to the calculation of higher-order eigensensitivity, Comput. Struct.117 (2013) 23-33.
[30] Weng, S., Xia, Y., Zhou, X. Q., Xu, Y. L. and Zhu, H. P., Inverse substructure method for model updating of structures, J. Sound Vib.331 (25) (2012) 5449-5468.
[31] Weng, S., Xia, Y., Xu, Y. L. and Zhu, H. P., An iterative substructuring approach to the calculation of eigensolution and eigensensitivity, J. Sound Vib.330 (14) (2011) 3368-3380.
[32] Xia, Y., Weng, S., Xu, Y. L. and Zhu, H. P., Calculation of eigenvalue and eigenvector derivatives with the improved Kron’s substructuring method, Struct. Eng. Mech.36 (1) (2010) 37-55.
[33] Boscato, G., Russo, S., Ceravolo, R. and Fragonara, L. Z., Global sensitivity-based model updating for heritage structures, Comput.-Aided Civ. Inf.30 (8) (2015) 620-635.
[34] Bakir, P. G., Reynders, E. and Roeck, G. D., Sensitivity-based finite element model updating using constrained optimization with a trust region algorithm, J. Sound Vib.305 (2007) 211-225.
[35] Kim, K. O. and Choi, Y. J., Energy method for selection of degrees of freedom in condensation, AIAA J.38 (7) (2000) 1253-1259.
[36] Cho, M. and Kim, H., Element-based node selection method for reduction of eigenvalue problems, AIAA J.42 (8) (2004) 1677-1684.
[37] Jeong, J., Baek, S. and Cho, M., Dynamic condensation in a damped system through rational selection of primary degrees of freedom, J. Sound Vib.331 (7) (2012) 1655-1668.
[38] Nelson, R. B., Simplified calculation of eigenvector derivatives, AIAA J.14 (9) (1976) 1201-1205. · Zbl 0342.65021
[39] Lanczos, C., An iteration method for the solution of the eigenvalue problem of linear differential and integral operators, J. Res. Natl. Inst. Stan.45 (45) (2008) 255-282.
[40] Madson, K., Nielsen, H. B. and Tingleff, O., Methods for non-linear least squares problems, Informatics and Mathematical Modelling, , (2004), pp. 1-30.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.